First figure out how many grams must freeze and then convert the grams to moles.
<span>Hf = -334 J/g. Convert this to KJ/g by dividing by 1000. (There are 1000 Joules in a kJ). </span>
<span>Hf = -334 J/g ÷ 1000 J/kj = -0.334 kJ/g </span>
<span>Now, divide 100 kJ by -0.334 kJ/g (see how the units are lining up?) </span>
<span>100 kJ ÷ -0.334 kJ/g = 299 g </span>
<span>Now convert this to moles by dividing by the molecular weight of water (18.0g/mole). </span>
<span>299 ÷ 18.0 = 16.6 moles </span>
Answer: the basic difference is Exergonic reactions release energy and an endergonic reactions absorb energy .
HOPE THIS HELPS!!!
Answer:
74.344 kJ.
Explanation:
Below is an attachment containing the solution.
Inter-molecular forces. The greater the attraction between particles the more energy required to break the forces or "melt" them.
Please mark as brainliest if satisfied with answer.
Answer:
<span>The energy required to go from liquid to gas is called as Latent Heat of Vaporization.
Explanation:
The process of conversion of liquid into gas phase is known as vaporization while the conversion of gas into liquid state is called as condensation. The liquid having stronger intermolecular forces than gases require some energy to break those interactions hence, the heat provided to break these interactions and convert it into gas phase is called as heat of vaporization. Remember, heat of vaporization and heat of condensation are same for a given substance but with different signs.
Example:
Heat of Vaporization of Water = 40.65 kJ/mol
Heat of Condensation of Water = - 40.65 Kj/mol</span>