Balanced chemical equation:
2 H2 + 1 O2 = 2 H2O
4 g H2 -------> 32 g O2 -----------> 36 g H2O
↓ ↓ ↓
14.0 g ---------> 2.0 g O2 ----------> mass H2O ?
32 * mass H2O = 2.0 * 36
32 * mass H2O = 72
mass of H2O = 72 / 32
mass of H2O = 2.25 g
hope this helps!.
Answer:
During cellular respiration, plants take in carbon dioxide from the air and break down stored glucose.
Explanation:
Before cellular respiration takes place in a plant, photosynthesis occurs and absorbs sunlight and carbon dioxide from the air. The process then produces oxygen and glucose, which are needed as the reactants for cellular respiration. Cellular respiration will break down the stored glucose to make energy to produce carbon dioxide and water. Then the cycle repeats itself.
In order of increasing percent water content:CoCl₂.6H₂O, Ba(OH)₂.8H₂O, MgSO₄.7H₂O
<h3>Further explanation</h3>

CoCl₂.6H₂O.MW=237.90 g/mol
6H₂O MW = 6.18=108 g/mol

MgSO₄.7H₂O.MW=246.48 g/mol
MW 7H₂O = 7.18=126 g/mol

Ba(OH)₂.8H₂O MW=315.48 g/mol
MW 8H₂O = 8.18=144 g/mol

Answer:
Of course it's C
Red planet
Explanation:
It is because the soil on Mars is rich of Fe (Iron).
That makes the soil look red.
Even on our planet we have such this places like hormuz island in Iran.
Answer:
Δ S = 26.2 J/K
Explanation:
The change in entropy can be calculated from the formula -
Δ S = m Cp ln ( T₂ / T₁ )
Where ,
Δ S = change in entropy
m = mass = 2.00 kg
Cp =specific heat of lead is 130 J / (kg ∙ K) .
T₂ = final temperature 10.0°C + 273 = 283 K
T₁ = initial temperature , 40.0°C + 273 = 313 K
Applying the above formula ,
The change in entropy is calculated as ,
ΔS = m Cp ln ( T₂ / T₁ ) = (2.00 )( 130 ) ln( 283 K / 313 K )
ΔS = 26.2 J/K