Answer:
(a) 0.613 m
(b) 0.385 m
(c) vₓ = 1.10 m/s, vᵧ = 3.50 m/s
v = 3.68 m/s², θ = 72.6° below the horizontal
Explanation:
(a) Take down to be positive.
Given in the y direction:
v₀ = 0 m/s
a = 10 m/s²
t = 0.350 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.350 s) + ½ (10 m/s²) (0.350 s)²
Δy = 0.613 m
(b) Given in the x direction:
v₀ = 1.10 m/s
a = 0 m/s²
t = 0.350 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (1.10 m/s) (0.350 s) + ½ (0 m/s²) (0.350 s)²
Δx = 0.385 m
(c) Find: vₓ and vᵧ
vₓ = aₓt + v₀ₓ
vₓ = (0 m/s²) (0.350 s) + 1.10 m/s
vₓ = 1.10 m/s
vᵧ = aᵧt + v₀ᵧ
vᵧ = (10 m/s²) (0.350 s) + 0 m/s
vᵧ = 3.50 m/s
The magnitude is:
v² = vₓ² + vᵧ²
v = 3.68 m/s²
The direction is:
θ = atan(vᵧ / vₓ)
θ = 72.6° below the horizontal
I think the correct answer is the second option. A circuit describes a closed conducting loop through which an electrical current can flow. It is a path that an electrical current could flow. A circuit could be a closed one or an open circuit. A closed circuit would be a circuit where the current could flow continuously. An open circuit would be a type of circuit where the flow current would only go once and stopped at a particular point since the current has nowhere to go. For a circuit to work, an electric supply should be available to supply the electric current.
Answer:
a. True - Joules is the unit measure for energy.
b. False - Potential energy is associated with position
c. False - Kinetic energy is associated with movement.
d. False - It's climbing, which means it also has kinetic energy.
82ohms
Explanation:
The equivalent resistance in the circuit is 82ohms
Given parameters:
R1 = 50ohms
R2 = 32ohms
Unknown:
Equivalent resistance = ?
Solution:
A resistor is an body in circuit that opposes the flow of electric current.
Resistors are usually connected in circuit and in series arrangement.
When resistors are connected in series, they have the same current passing through them.
Equivalent resistance is the sum of each of the connected resistors
Equivalent resistance = R1 + R2 = 50 + 32 = 82ohms
learn more:
Circuits brainly.com/question/2364338
#learnwithBrainly
This question is incomplete, the complete question is;
Now we will examine the electric field of a dipole. The magnitude and direction of the electric field depends on the distance and the direction. We will investigate in detail just two directions. With charges available in the simulation (all the charges are either positive or negative 1 nC increments).
how do you create a dipole with dipole moment 1 x 10-9 Cm with a direction for the dipole moment pointing to the right. Make a table below that shows the amounts of charge and the distance between the charges. There are many correct answers
Answer:
Given the data in question;
Dipole moment P = 1 × 10⁻⁹ C.m
now dipole pointing to the right;
P→
(-) ---------------->(+) 
d
so let distance between the dipoles be d
∴ P = d
Let
= 1 nC
so
P = d
1 × 10⁻⁹ = 1 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (1 × 10⁻⁹)
d = 1 m
Also Let
= 2 nC
so
P = d
1 × 10⁻⁹ = 2 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (2 × 10⁻⁹)
d = 0.5 m
Also Let
= 3 nC
so
P = d
1 × 10⁻⁹ = 3 × 10⁻⁹ × d
d = (1 × 10⁻⁹) / (3 × 10⁻⁹)
d = 0.33 m
such that;
charge distance
1 nC 1.00 m
2 nC 0.50 m
3 nc 0.33 m
4 nC 0.25 m
5 nC 0.20 m