The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct did not give the results described and is denoted as option A.
<h3>What is Thomson “plum-pudding” model?</h3>
This model was proposed by J.J Thomson in which referred an atom as a sphere of positive charge, and negatively charged electrons are embedded in it to balance the total positive charge.
This model was incorrect and the Rutherford atomic model was adopted in which he described the electrons orbits about a tiny positive nucleus.
The nucleus contains protons and neutrons instead thereby making it the correct choice.
Read more about Atom here brainly.com/question/6258301
#SPJ1
The options include the following:
a.The Rutherford experiment proved the Thomson “plum-pudding” model of the atom to be essentially correct.
b.The Rutherford experiment was useful in determining the nuclear charge on the atom.
c.Milikan’s oil-drop experiment showed that the charge on any particle was a simple multiple of the charge on the electron.
d.The electric discharge tube proved that electrons have a negative charge
0.250 mol/L
<em>Step 1</em>. Write the chemical equation
H2SO4 + 2NaOH → Na2SO4 + 2H2O
<em>Step 2</em>. Calculate the moles of H2SO4
Moles of H2SO4 = 12.5 mL H2SO4 × (0.500 mmol H2SO4/1 mL H2SO4)
= 6.25 mmol H2SO4
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 6.25 mmol H2SO4 × (2 mmol NaOH/(1 mmol H2SO4)
= 12.5 mmol NaOH
<em>Step 4</em>. Calculate the concentration of the NaOH
[NaOH] = moles/litres = 12.5 mmol/50.0 mL = 0.250 mol/L
The delta H of -484 kJ is the heat given off when 2 moles of H2 react with 1 mole of O2 to make 2 moles of H2O. You don't have anywhere near that much reactants, only 1/4 as much
<span>actual delta H = 0.34 moles H2 x (-484 kJ / 2 moles H2) = 823 kJ </span>
<span>delta E = delta H - PdeltaV = 823 kJ - 0.41 kJ = 822 kJ</span>
Answer:
Neurons and Protons
Explanation:
The Electrons are outside of the nucleus, also known as the <em>Electron</em><em> </em><em>Cloud</em><em>.</em>
I hope this was what you were looking for, and as always, I am joyous to assist anyone at any time.