Explanation:
The unit of work done is in Joules
Work done is a physical quantity that is defined as the force applied to move a body through a particular distance.
Work is only done when the force applied moves a body through a distance.
Work done = Force x distance
The maximum work is done when the force is parallel to the distance direction.
The minimum work is done when the force is at an angle of 90° to the distance direction.
So to solve this problem;
multiply the force applied by Zack and distance through which the bull was pulled.
<span>The
kinetic energy is the work done by the object due to its motion. It is
represented by the formula of the half the velocity squared multiply by the
mass of the object. In this problem, you have two vehicles, the other one is large and the
other one is small. Let us assume that they travel with the same velocity. Note
that the kinetic energy is proportional to the mass of the object. So when you
increase the mass of the other, it also increases the kinetic energy of that
object. The same holds true for the two vehicles. The larger the vehicle, its
kinetic energy is also large and therefore its stopping distance will be longer
than that of the smaller vehicle.</span>
Hi there!
II. Linear momentum of the system is zero.
This is an example of a RECOIL collision. With the Law of Conservation of Momentum, momentum remains constant before and after the collision.
Thus, the total momentum would also be equivalent to zero after the collision.
Answer:
d=9.462×10^15 meters
Explanation:
<u>Relation between distance, temps and velocity:</u>
d=v*t
t=1year*(365days/1year)*/(24hours/1day)*(3600s/1h)=31536000s
So:
1 light year=d=3*10^8m/s*3.154*10^7s=9.462×10^15 meters
D. Electrons are shared between the bromine atoms and carbon atoms