Answer:
![K_{c} = [\text{C}]^{2}[\text{[D]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5B%5Ctext%7BC%7D%5D%5E%7B2%7D%5B%5Ctext%7B%5BD%5D%7D)
Explanation:

The general formula for an equilibrium constant expression is
![K_{c} = \dfrac{[\text{Products}]}{[\text{Reactants}]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5Cdfrac%7B%5B%5Ctext%7BProducts%7D%5D%7D%7B%5B%5Ctext%7BReactants%7D%5D%7D)
Solids and liquids are not included in the equilibrium constant expression.
Thus, for this reaction,
![K_{c} = [\textbf{C}]^{\mathbf{2}}\textbf{[D]}](https://tex.z-dn.net/?f=K_%7Bc%7D%20%3D%20%5B%5Ctextbf%7BC%7D%5D%5E%7B%5Cmathbf%7B2%7D%7D%5Ctextbf%7B%5BD%5D%7D)
Answer:
n = 3
Explanation:
Given the formula for the transition energy of an atom with 1 electron:

For the H transition n=5 to n=2:

Then we solve for nf with Z=2 (Helium)


Is near 3, actually the energy of the transitions are:
H (5⇒2) = -2.85 eV = 434 nm (Dark blue)
He (4⇒3) = -2.64 eV = 469 nm (Light blue)
I thought it was cool to see the actual colors. Included them.
Answer:
Being a weak acid and a strong base, where it is diluted in a neutral medium such as water, the basic medium predominates, almost alkaline pH.
Explanation:
The acidity of the solution, being weak, means that its pH is not so low, therefore it will be easier to reach the values of 7 or 7 where alkalinity or basity is indicated.
Answer:
Iron (lll) oxide reacts with carbon monoxide according to the equation: Fe203(s) + 3 CO(g)-2Fe(s) + 3 CO2(g) A reaction mixture initially contains 22.55 g Fe203 and 14.78 g CO.
Explanation:
I hope this helps (:
<span>F can only have oxidation number of -1
The overall compound has an oxidation number of -1
You have 6 Fs, so 6(-1) = -6
charge from F
X = oxidation number of P
x + (-6) = -1
solve for
x = +5</span>