Markovnikov rule, in organic chemistry, a generalization, formulated by Vladimir Vasilyevich Markovnikov in 1869, stating that in addition reactions to unsymmetrical alkenes, the electron-rich component of the reagent adds to the carbon atom with fewer hydrogen atoms bonded to it, while the electron-deficient component ...
(1)
At phase A, the water is fully solid, At phase C the water is fully liquid and at phase E the water is fully gas. At this ponts all the substance is in one state other than the fact that its molecules are getting more excited as they gain more energy. This is why there is an increase in temperatures. At the transition points water is changing phase and therefore at any point in between the transition not all water will be in the same phase.
(2)
Point F
This is because the solid water stops rising in temperatures and begins changing phase into liquid water. This is the highest temperatures that the solid water can attain without turning into liquid. You can see from the graph that the temperatures rise at this point levels off between point F and G
(3)
Point H
This is because the liquid water stops rising in temperatures and begins changing phase into gaseous form. This is the highest temperatures that the liquid water can attain without turning into gas/water vapor. You can see from the graph that the temperatures rise at this point levels off between point H and I.
(4)
The energy is increasing
You can see from the graph that energy is being absorbed by the water (due to increases in energy on the x-axis on the graph) but there is no corresponding rise in temperatures in y-axis. This means the energy begin absorbed is being used to change the phase of the water.
(5)
The water is changing phases
Because the energy absorbed is being used to change the phase of the liquid. The energy is being used to break the bonds between the molecules so the molecules become farther apart and causing a change in phase on the water. Therefore the vibrational moments of the molecules (responsible for rising in temperatures) remain the same over this latent phase. This energy absorbed to change phase is called latent energy/heat.
Learn More:
For more on change of phase of water check out;
brainly.com/question/2128466
brainly.com/question/13251064
#LearnWithBrainly
<span> First you need to know how many isotopes there are of silicon, and its average atomic units (look at periodic table). Then make up a system of equations to solve for it. Theres 3 stable silicon isotopes (28, 29, 30) so you will need to have 3 equations. You must be given the percent abundance of at least one of the isotopes to solve because here I can only see 2 equations (numbered down below) set x = percent abundance of si-28 y = percent abundance of si-29 z = percent abundance of si-30 since all of silicon atoms account for 100% of all silicon: x + y + z = 100% = 1 therefore: 1) x = 1 - y - z You also have 2) 28x + 29y + 30z = average atomic mass you can substitute x so that equation becomes: 28 (1 - y - z) + 29y + 30z = average atomic mass See how you have 2 variables here? You cant go on until you know the value of one isotope already or you have given a clue which you can derive the third equation</span>
Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL