Answer : The final temperature of the metal block is, 
Explanation :

As we know that,

.................(1)
where,
q = heat absorbed or released
= mass of aluminum = 55 g
= mass of water = 0.48 g
= final temperature = ?
= temperature of aluminum = 
= temperature of water = 
= specific heat of aluminum = 
= specific heat of water= 
Now put all the given values in equation (1), we get
![55g\times 0.900J/g^oC\times (T_{final}-25)^oC=-[0.48g\times 4.184J/g^oC\times (T_{final}-25)^oC]](https://tex.z-dn.net/?f=55g%5Ctimes%200.900J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%3D-%5B0.48g%5Ctimes%204.184J%2Fg%5EoC%5Ctimes%20%28T_%7Bfinal%7D-25%29%5EoC%5D)

Thus, the final temperature of the metal block is, 
Answer:
87.78 in cubed
Explanation:
excuse me if I am wrong i tried my best
don't know if its right
Answer:
c. 77 %
Explanation:
Percent mass (% mass) of solute = mass of solute/mass of solution × 100
According to this question, a mountain dew solution weighing 300grams contains 231 g of sugar. This means that:
% mass of sugar = 231g/300g × 100
% mass of sugar = 0.77 × 100
% mass of sugar = 77%.
Answer:
[IBr] = 0.049 M.
Explanation:
Hello there!
In this case, according to the balanced chemical reaction:

It is possible to set up the following equilibrium expression:
![K=\frac{[IBr]^2}{[I_2][Br_2]} =0.0110](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BIBr%5D%5E2%7D%7B%5BI_2%5D%5BBr_2%5D%7D%20%3D0.0110)
Whereas the the initial concentrations of both iodine and bromine are 0.50 M; and in terms of
(reaction extent) would be:

Which can be solved for
to obtain two possible results:

Whereas the correct result is 0.0245 M since negative results does not make any sense. Thus, the concentration of the product turns out:
![[IBr]=2x=2*0.0249M=0.049M](https://tex.z-dn.net/?f=%5BIBr%5D%3D2x%3D2%2A0.0249M%3D0.049M)
Regards!
so you can see those fluorine atoms have really spread out around the central phosphorus atom. this gives us a trigonal bi-pyramidal molecular geometry for pf5.