The element that gains electrons, becomes reduced.
While the one which loses electrons, becomes oxidized.
In this equation,
CH₃OH + Cr₂O₇²⁻---- --> CH₂O + Cr³⁺.
By balancing the equation, we will get:
3CH₃OH + Cr₂O₇²⁻ + 8H⁺ --> 3CH₂O + 2Cr³⁺ + 7H₂O
Here the oxidation state of Cr changes from +6 to +3 that is it is being reduced thus serving as a oxidizing agent while other element retain their charges.
Here Cr₂O₇²⁻ is reduced while CH₃OH is oxidized.
So Cr₂O₇²⁻ serves as a oxidizing agent, while CH₃OH serves as reducing agent .
Option 1/A (It is the first one)
Answer: The correct answer is- Replication of DNA ( deoxyribonucleic acid) must happen before a body cell can begin mitotic cell division.
Mitotic division is a type of cell division in which a parent cell divides two identical daughter cells ( through a series of five stages that is- prophase, metaphase, anaphase, telophase, and cytokinesis) having same number of chromosomes as that of the parental cell.
It occupies the second stage of cell cycle, the first being interphase ( which has three stages that is G1, S, and G2 phase). Replication of DNA takes place in the interphase ( particulary in the S phase) so that cell is ready to divide in the mitotic phase.
Thus, replication of DNA ( deoxyribonucleic acid) must happen before a body cell can begin mitotic cell division.
Answer :
The correct answer for primary component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .
<u>Buffer solution :</u>
It is a solution of mixture of weak acid and its conjugate base OR weak base and its conjugate acid . It resist any change in solution when small amount of strong acid or base is added .
<u>Capacity of a good buffer : </u>
A good buffer is identified when pH = pKa .
From Hasselbalch - Henderson equation which is as follows :
![pH = pka + log \frac{[A^-]}{[HA]}](https://tex.z-dn.net/?f=pH%20%3D%20pka%20%2B%20log%20%5Cfrac%7B%5BA%5E-%5D%7D%7B%5BHA%5D%7D)
If [A⁻] = [HA] ,
pH = pka + log 1
pH = pKa
This determines that if concentration of weak acid and its conjugate base are changed in small quantity , the capacity of buffer to maintain a constant pH is greatest at pka . If the amount of [A⁻] or [HA] is changed in large amount , the log value deviates more than +/- 1M and hence pH .
Hence Buffer has best capacity at pH = pka .
<u>Phosphate Buffer : </u>
Phosphate may have three types of acid-base pairs at different pka ( shown in image ).
Since the question is asking the pH = 7.4
At pH = 7.4 , the best phosphate buffer will have pka near to 7.4 .
If image is checked the acid - base pair " H₂PO₄⁻ and HPO₄²⁻ has pka 7.2 which is near to pH = 7.4 .
Hence we can say , the primary chemical component of phosphate buffer at pH = 7.4 is H₂PO₄⁻ and HPO₄²⁻ .
Answer:
oxygen is limiting reactant
Explanation:
Given data:
Mass of phosphorus = 25.0 g
Mass of oxygen = 50.0 g
What is limiting reactant ?
Solution:
Chemical equation:
P₄ + 5O₂ → P₄O₁₀
Number of moles of P₄:
Number of moles = mass/molar mass
Number of moles = 25.0 g/ 123.89 g/mol
Number of moles = 0.20 mol
Number of moles of O₂:
Number of moles = mass/molar mass
Number of moles = 50.0 g/ 32 g/mol
Number of moles = 1.56 mol
now we will compare the moles of reactants with product:
P₄ : P₄O₁₀
1 : 1
0.20 : 0.20
O₂ : P₄O₁₀
5 : 1
1.56 : 1/5×1.56 = 0.312 mol
Less number of moles of product are formed by the oxygen thus it will act as limiting reactant.