Answer:

Now when it will reach at point B then its normal force is just equal to ZERO


Explanation:
Since we need to cross both the loops so least speed at the bottom must be

also by energy conservation this is gained by initial potential energy


so we will have

now we have

here we have
R = 7.5 m
so we have


Now when it will reach at point B then its normal force is just equal to ZERO

now when it reach point C then the speed will be
![mgh - mg(2R_c) = \frac{1}{2]mv_c^2](https://tex.z-dn.net/?f=mgh%20-%20mg%282R_c%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Dmv_c%5E2)


now normal force at point C is given as



Answer:
1/R = 1/R1 + 1/R2 + 1/R3
1/1 + 1/2 + 1/4 = 1 + .5 + .25 = 1.75
1/1.75 = .572
multiplying this by 100 gives us
R = 57.2 ohms
The smallest resistor (100 ohms) will draw the most current
(One can also use R = R1 R2 R3 / (R1 R2 + R1 R3 + R2 R3)
Megaliter > kiloliter > liter >centiliter >mililiter > deciliter > nanoliter
Have a nice day !