Mechanical digestion is chewing, and chemical digestion is the saliva in your mouth breaking down food.
Answer:
When the metal wire in an incandescent lightbulb glows when the light is switched on and stops glowing when it is switched off, this is an example of resistance, which provides light and heat.
Explanation:
A car traveling south is 200 kilometers from its starting point after 2 hours. What is the average velocity of the car?
Choose: 100 kilometers/hour south
-- Although it's not explicitly stated in the question,we have to assume that
the surface is frictionless. I guess that's what "smooth" means.
-- The total mass of both blocks is (1.5 + 0.93) = 2.43 kg. Since they're
connected to each other (by the string), 2.43 kg is the mass you're pulling.
-- Your force is 6.4 N.
Acceleration = (force)/(mass) = 6.4/2.43 m/s²<em>
</em> That's about <em>2.634 m/s²</em> <em>
</em>(I'm going to keep the fraction form handy, because the acceleration has to be
used for the next part of the question, so we'll need it as accurate as possible.)
-- Both blocks accelerate at the same rate. So the force on the rear block (m₂) is
Force = (mass) x (acceleration) = (0.93) x (6.4/2.43) = <em>2.45 N</em>.
That's the force that's accelerating the little block, so that must be the tension
in the string.
Answer:
24.3KW
Explanation:
A)The kinetic energy is changing, the potential energy is changing and the chemical energy in form of fuel powering the engine also is changing
The kinetic energy is increasing as the body gain speed, the potential energy also increases as the body gain height against gravity and the chemical energy in form of fuel decreases as the body burn the fuel to create a lifting force
B) The workdone by the lifting force = the change in kinetic energy + the change in potential energy
C)The time taken in seconds to do the work is the variable needed
D) average power generated by the lifting force = (change in kinetic energy + change in potential energy) / time taken in seconds
Average power = 1/2 * m(mass) (Vf-Vi)^2 + mg(hf-hi) /t where vf is final speed and vi is initial speed at rest = 0, similarly, hf = final height and hi = initial height.
Average power = 1/2*810*7^2 + 810*9.81*8.2/3.5s
Average power = (19845+65158.02)/3.5 = 24286.577 approx 24.3kW