Answer:
B
Step-by-step explanation:
Plug the values of x into each equation
Answer:
8.9375
Step-by-step explanation:
2.75×3.25=8.9375
According to the question it said <u>i</u><u>n</u><u>c</u><u>r</u><u>e</u><u>a</u><u>s</u><u>e</u><u> </u><u>to</u><u> </u>and that is why I only multiplied but if the question said <u>increase</u><u> </u><u>by</u><u> </u>then I would have to add my product (8.9375) to the original height of the photo.
We have that
<span>(c-4)/(c-2)=(c-2)/(c+2) - 1/(2-c)
</span>- 1/(2-c)=-1/-(c-2)=1/(c-2)
(c-4)/(c-2)=(c-2)/(c+2)+ 1/(c-2)------- > (c-4)/(c-2)-1/(c-2)=(c-2)/(c+2)
(c-4-1)/(c-2)=(c-2)/(c+2)---------------- > (c-5)/(c-2)=(c-2)/(c+2)
(c-5)/(c-2)=(c-2)/(c+2)------------- > remember (before simplifying) for the solution that c can not be 2 or -2
(c-5)*(c+2)=(c-2)*(c-2)------------------ > c²+2c-5c-10=c²-4c+4
-3c-10=-4c+4----------------------------- > -3c+4c=4+10----------- > c=14
the solution is c=14
the domain of the function is (-∞,-2) U (-2,2) U (2,∞) or
<span>all real numbers except c=-2 and c=2</span>
Answer:
- Yes, diagonals bisect each other
Step-by-step explanation:
<em>See attached</em>
Plot the points on the coordinate plane
Visually, it is seen that the diagonals bisect each other.
We can prove this by calculating midpoints of AC and BD
<u>Midpoint of AC has coordinates of:</u>
- x = (1 - 1)/2 = 0
- y = (4 - 4)/2 = 0
<u>Midpoint of BD has coordinates of:</u>
- x = (4 - 4)/2 = 0
- y = (-1 + 1)/2 = 0
As per calculations the origin is the bisector of the diagonals.
Answer:
Step-by-step explanation:
4 and 6