The correct answer is C) towards the center of the circle.
Although the object is moving at a constant speed it is constantly accelerating due to the constant change in direction as it describes the circular path. This causes a constant change in velocity as velocity is a vector quantity.
For the object to maintain the circular path there has to be centripetal force acting on the object and this centripetal force is directed towards the center of the circle.
Answer:
When displacement is zero, the particle may be at rest, therefore, distance travelled = 0.
Again, when displacement is zero, the final position matches with the initial position after some time, but the distance travelled will not be zero.
You need to know how much friction that object.
Answer:
here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa
Explanation:
As wee know that the amplitude of the wave will decide the energy of the wave
Here we know that energy density of electromagnetic wave is given as

now we have

so here we can say that intensity of the wave at the given distance from the source is given by formula

so here as we increase the distance the intensity will decrease and hence the amplitude of the electric field will decrease and vice-versa.
Answer:
<h2>0.2 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.2 m/s²</h3>
Hope this helps you