Answer: If one bulb goes out the other bulbs stay lit.
If there is a break in one branch of the circuit, current can still flow through the other branches.
Explanation:
Complete question:
An air-filled parallel-plate capacitor has plates of area 2.90 cm2 separated by 2.50 mm. The capacitor is connected to a(n) 18.0 V battery. Find the value of its capacitance.
Answer:
The value of its capacitance is 1.027 x 10⁻¹² F
Explanation:
Given;
area of the plate, A = 2.9 cm² = 2.9 x 10⁻⁴ m²
separation distance of the plates, d = 2.5 mm = 2.5 x 10⁻³ m
voltage of the battery, V = 18 V
The value of its capacitance is calculated as;

Therefore, the value of its capacitance is 1.027 x 10⁻¹² F
Answer:
K' = 1777.777 J
Explanation:
Given that
m = 40 kg
v= 15 m/s
K=1000
Given that kinetic energy(K) varies with mass(m) and velocity(v)
K= C(mv²)
Where
C= Constant
m=mass
v=velocity
When
m = 40 kg ,v= 15 m/s ,K=1000
K= C(mv²)
1000 = C( 40 x 15²)
C=0.111111
When m = 40 kg and v= 20 m/s
K' = C(mv²)
K= 0.1111 x (40 x 20²)
K' = 1777.777 J
The angle of baking from the calculation is obtained as 30°.
<h3>What is banking?</h3>
The term banking refers to a means of preventing vehicles from skidding off the road at curves.
We know that the banking angle is obtained from;
θ = tan-1(v^2/rg)
v = 24.5 m/s
r = 110 m
g = 9.8 m/s^2
θ = tan-1(25^2/9.8 * 110)
θ = tan-1(625 /1078)
θ = 30°
Learn more about the banking angle:brainly.com/question/26759099?r
#SPJ1