Answer:
A hypertonic solution has increased solute, and a net movement of water outside causing the cell to shrink. A hypotonic solution has decreased solute concentration, and a net movement of water inside the cell, causing swelling or breakage.
Explanation: hope this helps :) sorry if it's wrong :(
then the electrons and protons would have a even amount of negetive electric charges
Answer:
14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.
Explanation:
The heat Q that is necessary to provide for a mass m of a certain substance to change phase is equal to Q = m*L, where L is called the latent heat of the substance and depends on the type of phase change.
During the evaporation process, a substance goes from a liquid to a gaseous state and needs to absorb a certain amount of heat from its immediate surroundings, which results in its cooling. The heat absorbed is called the heat of vaporization.
So, it is called "heat of vaporization", the energy required to change 1 gram of substance from a liquid state to a gaseous state at the boiling point.
In this case, being:
- L= 84
and replacing in the expression Q = m*L you get:
Q=172 g*84
Q=14,448 J
<u><em>14,448 J of heat would it take to completely vaporize 172 g of this liquid at its boiling point.</em></u>
The answers will help you!!!!!
~~~~~~~~~~~~~~~~~~~~~~~~~~
The statement describes from the relationship between multiple approaches and familiarity with similar work. The answers is would be last sentences. D. Multiple approaches may occur because scientists develop similar interests independently.
Answer:
9.72 grams.
Explanation:
From the equation, 4 moles of NH₃ produce 6 moles of water.
Therefore the reaction to product ratio of NH₃ to H₂O is 4:6
and 2:3 into its simplest form.
The number of moles of NH₃ in 6.12 g is:
Number of moles=mass/ RMM
=6.12 g/17 G/mol
=0.36 moles.
Therefore the number of moles of H₂O produced is calculated as follows.
(0.36 Moles×3)2 = 0.54 moles
Mass= Number of moles × RMM
=0.54 moles×18g/mol
=9.72 grams.