Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.
Theodore Richards; first scienstist to recieve nobel prize in Chemistry, earning the award "in recognition of his exact determinations of atomic weights of a large number of chemical elements."
Answer is: the maximum concentration of Pb²⁺ is 6.8·10⁻³ M.
Chemical reaction 1: PbCl₂(s) → Pb²⁺(aq) + 2Cl⁻(aq).
Chemical reaction 2: NaCl(aq) → Na⁺(aq) + Cl⁻(aq).
Ksp(PbCl₂) = 1.7·10⁻⁵.
c(NaCl) = c(Cl⁻) = 0.0500 M.
Ksp(PbCl₂) = c(Pb²⁺) · c(Cl⁻)².
c(Pb²⁺) = Ksp(PbCl₂) ÷ c(Cl⁻)².
c(Pb²⁺) = 1.7·10⁻⁵ M³ ÷ (0.0500 M)².
c(Pb²⁺) = 0.000017 M³ ÷ 0.0025 M².
c(Pb²⁺) = 0.0068 M = 6.8·10⁻³ M.
Evaporation is the change from a liquid to gas