Answer:
The magnitude of force must you apply to hold the platform in this position = 888.89 N
Explanation:
Given that :
Workdone (W) = 80.0 J
length x = 0.180 m
The equation for this work done by the spring is expressed as:

Making the spring constant
the subject of the formula; we have:

Substituting our given values, we have:


The magnitude of the force that must be apply to the hold platform in this position is given by the formula :


F = 888.89 N
PART A)
As we know that energy of light depends on its wavelength and frequency as following formula

now we know that wavelength of blue light is less than the red light so here energy of blue light will be more
also we know that

so here if wavelength is smaller for blue light so its frequency will be high and the speed of both light will be same in same medium
PART B)
Since we know that frequency of blue light is more than red light as well as wavelength of blue light is less than the wavelength of blue light so here blue light will have more energy
When blue light and red light strike the metal surface then due to more energy of blue light it will release some loosely bonded electrons from metal surface which will contribute in current.
here if we increase the intensity of light then the number of photons that contain the blue light of certain energy will be more and that will contribute more current
So here quantification help as we know that due to quantization only certain frequency or energy will lead to eject electron so all colours will not give this current
Something hot like a fire , an eye of a stove , and the sun
Answer:
that would be newtons 3rd law
Explanation:
because its how it is
Answer: a = 1.32 * 10^18m/s² due north
Explanation: The magnitude of the force required to move the electron is given as
F = ma
The force exerted on the charge by the electric field of intensity (E) is given by
F = Eq
Thus
Eq = ma
a = E * q/ m
Where a = acceleration of charge
E = strength of electric field = 7400N/c
q = magnitude of electronic charge = 1.609 * 10^-6c
m = mass of an electronic charge = 9.109 * 10^-31kg
a = 7400 * 1.609 * 10^-16/ 9.109 * 10^-31
a = 11906.6 * 10^-16 / 9.019 * 10^-31
a = 1.19 * 10^-12 / 9.019 * 10^-31
a = 0.132 * 10^19
a = 1.32 * 10^18m/s²
As stated in the question, the direction of the electric field is due north hence, the direction of it force will also be north thus making the electron experience a force due north ( according to Newton second law of motion)