Answer:
1520mmHg
Explanation:
Data obtained from the question include:
V1 (initial volume) = 600 mL
P1 (initial pressure) = 760 mmHg
V2 (final volume) = 300 mL
P2 (final pressure) =.?
Using the Boyle's law equation P1V1 = P2V2, the final pressure of the gas can easily be obtained as shown below:
P1V1 = P2V2
760 x 600 = P2 x 300
Divide both side by 300
P2 = (760 x 600) /300
P2 = 1520mmHg
The final pressure of the gas is 1520mmHg

<em><u>The Rutherford model shows that an atom is mostly empty space, with electrons orbiting a fixed, positively charged nucleus in set, predictable paths.</u></em>
Answer:
Excess Reagent = oxygen
Explanation:
Limiting reagent: The substance that is totally consumed when the reaction is completed.
Excess reagent: The substance left after the limiting reagent is consumed completely
The balanced chemical equation for formation of water is as follow:

This means when 2 moles of hydrogen reacts with 1 mole of oxygen, 2 moles of water is produced.
Hence the ratio in which hydrogen and oxygen gas reacts is 2:1
Now if 2 mole hydrogen require 1 mole of oxygen ,then 4 mole hydrogen need 2 mole of oxygen.

or

Here 5 mole of oxygen is reacting but only 2 mole is required .
Oxygen is in excess.
Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)