Answer:
coefficient of static friction of the surface and the normal force
Explanation:
The coefficient of static friction of the surface and the normal force exerted on the surface given by equation F = μR
Answer:
6.0 m below the top of the cliff
Explanation:
We can find the velocity at which the ball dropped from the cliff reaches the ground by using the SUVAT equation

where
u = 0 (it starts from rest)
g = 9.8 m/s^2 (acceleration of gravity, we assume downward as positive direction)
h = 24 m is the distance covered
Solving for h,

So the ball thrown upward is launched with this initial velocity:
u = 21.7 m/s
From now on, we take instead upward as positive direction.
The vertical position of the ball dropped from the cliff at time t is

While the vertical position of the ball thrown upward is

The two balls meet when

So the two balls meet after 1.11 s, when the position of the ball dropped from the cliff is

So the distance below the top of the cliff is

Explanation:
An object's acceleration is the rate its velocity (speed and direction) changes. Therefore, an object can accelerate even if its speed is constant - if its direction changes. ... Light's acceleration is zero. Since it travels in a straight line, its direction does not change.
Just know this:
x + y < or equal to z
Answer:
Explanation:
From the given information:
The difference in the maximum energy stored is can be determined by finding the difference in the maximum stored energy in the sprinters and that of the non-athlete:



