<h2>
Answer: 56.718 min</h2>
Explanation:
According to the Third Kepler’s Law of Planetary motion<em> </em><em>“The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.
</em>
In other words, this law states a relation between the orbital period
of a body (moon, planet, satellite) orbiting a greater body in space with the size
of its orbit.
This Law is originally expressed as follows:
(1)
Where;
is the Gravitational Constant and its value is
is the mass of Mars
is the semimajor axis of the orbit the spacecraft describes around Mars (assuming it is a <u>circular orbit </u>and a <u>low orbit near the surface </u>as well, the semimajor axis is equal to the radius of the orbit)
If we want to find the period, we have to express equation (1) as written below and substitute all the values:
(2)
(3)
(4)
Finally:
This is the orbital period of a spacecraft in a low orbit near the surface of mars
Answer:
24.3KW
Explanation:
A)The kinetic energy is changing, the potential energy is changing and the chemical energy in form of fuel powering the engine also is changing
The kinetic energy is increasing as the body gain speed, the potential energy also increases as the body gain height against gravity and the chemical energy in form of fuel decreases as the body burn the fuel to create a lifting force
B) The workdone by the lifting force = the change in kinetic energy + the change in potential energy
C)The time taken in seconds to do the work is the variable needed
D) average power generated by the lifting force = (change in kinetic energy + change in potential energy) / time taken in seconds
Average power = 1/2 * m(mass) (Vf-Vi)^2 + mg(hf-hi) /t where vf is final speed and vi is initial speed at rest = 0, similarly, hf = final height and hi = initial height.
Average power = 1/2*810*7^2 + 810*9.81*8.2/3.5s
Average power = (19845+65158.02)/3.5 = 24286.577 approx 24.3kW
The closure temperature represents the point when isotopes are no longer free to move out of a crystal lattice.
Answer: Option C
<u>Explanation:</u>
The closure temperature can also be termed as blocking temperature. It is mostly used in radiometric dating. As the temperature decreases, below a certain point the isotopes may get freeze in their lattice positions. And there may be slowing of diffusion.
At the closure temperature, that rate of diffusion will be zero as the isotopes will be no longer free to move out of crystal lattice. So, this is termed as closure or blocking temperature. As the isotopes loose their ability to move, their concentration will remain fixed in their position leading to measurement of radiation dating.
Answer:
The launched cannonball
Explanation:
Consider,
The mass of the cannonball, m
The mass of the cannon, M = 1000 m
The velocity of the cannon, V
The velocity of the cannonball, v = 100 V
The K.E of the cannon, K.E = ½ MV²
The K.E of the cannonball, k.e = ½ mv²
Substituting the values in the K.E of the cannon
½ MV² = ½ x 1000 m x (v/100² )
= ½ mv²/ 10
Therefore, ½ mv² = 10 x ½ MV²
The K.E of the cannonball is 10 times the K.E of the cannon.
Hence, the cannonball has a grater K.E
Explanation:
because us humans just have to adapt animals have to smell and can tell if they are in dan