So, If the silica cyliner of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
To estimate the operating temperature of the radiant wall heater, we need to use the equation for power radiated by the radiant wall heater.
<h3>Power radiated by the radiant wall heater</h3>
The power radiated by the radiant wall heater is given by P = εσAT⁴ where
- ε = emissivity = 1 (since we are not given),
- σ = Stefan-Boltzmann constant = 6 × 10⁻⁸ W/m²-K⁴,
- A = surface area of cylindrical wall heater = 2πrh where
- r = radius of wall heater = 6 mm = 6 × 10⁻³ m and
- h = length of heater = 0.6 m, and
- T = temperature of heater
Since P = εσAT⁴
P = εσ(2πrh)T⁴
Making T subject of the formula, we have
<h3>Temperature of heater</h3>
T = ⁴√[P/εσ(2πrh)]
Since P = 1.5 kW = 1.5 × 10³ W
Substituting the values of the variables into the equation, we have
T = ⁴√[P/εσ(2πrh)]
T = ⁴√[1.5 × 10³ W/(1 × 6 × 10⁻⁸ W/m²-K⁴ × 2π × 6 × 10⁻³ m × 0.6 m)]
T = ⁴√[1.5 × 10³ W/(43.2π × 10⁻¹¹ W/K⁴)]
T = ⁴√[1.5 × 10³ W/135.72 × 10⁻¹¹ W/K⁴)]
T = ⁴√[0.01105 × 10¹⁴ K⁴)]
T = ⁴√[1.105 × 10¹² K⁴)]
T = 1.0253 × 10³ K
T = 1025.3 K
So, If the silica cylinder of the radiant wall heater is rated at 1.5 kw its temperature when operating is 1025.3 K
Learn more about temperature of radiant wall heater here:
brainly.com/question/14548124
Answer:
the volume of liquid decreased due to evaporation from the exposed free surface of water so molecules got evaporated .
evaporation occurs at room temperature.
Answer:

Explanation:
Assume both children bodies are point particles. The total moment of inertia about the rotation axis of 2 points particles of mass 16 kg and 25 kg at 1.5 m arm length is

where
are the masses of 2 children
are their distance to the center of rotation

Answer:
9 and 3 N
Explanation:
Forces in the same direction sum up to produce the resultant force;
One force subtract the other will give the resultant force when they are in opposite directions;
Lets say one direction is forwards and the opposite backwards;
We have one force, let's say force A, in the forwards direction and another force, force B, acting in the same (forwards) or opposite (backwards) direction;
If B is acting in the same direction, then the resultant force (in this case) will be as follows:
A + B = 12
If B is acting in the opposite direction, then the resultant force will be as follows:
A - B = 6
Summing the two equations will allow us to solve for A:
A + B + (A - B) = 12 + 6
2A = 18
A = 9
Substitute this into either of the above equations and we can solve for B:
(9) - B = 6
B = 9 - 6
B = 3