1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
2 years ago
14

Please help i need it please​

Physics
2 answers:
Ronch [10]2 years ago
6 0
ANSWER:
Ca(OH)2 shows a decrease of solubility with the increase of temperature.

Hope it helps u! :)
Anika [276]2 years ago
4 0

Answer:

Ca(OH)2 shows a decrease of solubility with the increase of temperature.

Explanation:

plz branliest me

You might be interested in
How are objects in space able to “fall” into orbit?
Zolol [24]

Answer:

MRCORRECT has answered the question

Explanation:

Newton realized that the reason the planets orbit the Sun is related to why objects fall to Earth when we drop them. The Sun's gravity pullson the planets, just as Earth's gravity pulls down anything that is not held up by some other force and keeps you and me on the ground.

7 0
3 years ago
I attach a 4.1 kg block to a spring that obeys Hooke's law and supply 3.8 J of energy to stretch the spring. I release the block
borishaifa [10]

Answer:

The amplitude of the oscillation is 2.82 cm

Explanation:

Given;

mass of attached block, m = 4.1 kg

energy of the stretched spring, E = 3.8 J

period of oscillation, T = 0.13 s

First, determine the spring constant, k;

T = 2\pi \sqrt{\frac{m}{k} }

where;

T is the period oscillation

m is mass of the spring

k is the spring constant

T = 2\pi \sqrt{\frac{m}{k} } \\\\k = \frac{m*4\pi ^2}{T^2} \\\\k = \frac{4.1*4*(3.142^2)}{(0.13^2)} \\\\k = 9580.088 \ N/m\\\\

Now, determine the amplitude of oscillation, A;

E = \frac{1}{2} kA^2

where;

E is the energy of the spring

k is the spring constant

A is the amplitude of the oscillation

E = \frac{1}{2} kA^2\\\\2E = kA^2\\\\A^2 = \frac{2E}{k} \\\\A = \sqrt{\frac{2E}{k} } \\\\A =  \sqrt{\frac{2*3.8}{9580.088} }\\\\A = 0.0282 \ m\\\\A = 2.82 \ cm

Therefore, the amplitude of the oscillation is 2.82 cm

8 0
3 years ago
Which equation can be used to solve for acceleration? <br><br>​
antoniya [11.8K]
A = d/t
hope this helps x
3 0
3 years ago
Read 2 more answers
A van starts off 152 miles directly north from the city of Springfield. It travels due east at a speed of 25 miles per hour. Aft
erastovalidia [21]

Answer:

12.84 miles per hour

Explanation:

Given:

Vertical distance of starting point of van from Springfield (d) = 152 miles

Speed in east direction (s) = 25 mph

Distance traveled in east direction (e) = 91 miles

Let the direct distance from Springfield of the van be 'x' at any time 't'.

Now, from the question, it is clear that, the vertical distance of van is fixed at 152 miles and only the horizontal distance is changing with time.

Now, consider a right angled triangle SNE representing the given situation.

Point S represents Springfield, N represents the starting point of van and E represents the position of van at any time 't'.

SN = d = 152 miles (fixed)

Now, using the pythagorean theorem, we have:

SE^2=SN^2+NE^2\\\\x^2=d^2+e^2\\\\x^2=(152)^2+e^2----(1)

Now, differentiating both sides with respect to time 't', we get:

2x\frac{dx}{dt}=0+2e\frac{de}{dt}\\\\\frac{dx}{dt}=\frac{e}{x}\frac{de}{dt}

Now, we are given speed as 25 mph. So, \frac{de}{dt}=25\ mph

Also, when e=91\ mi, we can find 'x' using equation (1). This gives,

x^2=23104+(91)^2\\\\x=\sqrt{31385}=177.16\ mi

Now, plug in the values of 'e' and 'x' and solve for \frac{dx}{dt}. This gives,

\frac{dx}{dt}=\frac{91}{177.16}\times 25\\\\\frac{dx}{dt}=12.84\ mph

Therefore, the distance between the van and Springfield is changing at a rate of 12.84 miles per hour

6 0
3 years ago
The heat capacity of nickel is 0.444 J/(g · °C). Calculate the amount of heat needed to raise the temperature of 18 g of nickel
azamat

The final speed of the nickel at the given quantity of heat is determined as 202.1  m/s.

<h3>Final speed of the nickel</h3>

Apply the principle of conservation of energy.

Q = mcΔθ

Q = (18)(0.444)(66 - 20)

Q = 367.63 J

Q = K.E = ¹/₂mv²

2K.E = mv²

v = √(2K.E/m)

where;

  • v is the final speed

v = √(2 x 367.63)/(0.018))

v = 202.1 m/s

Learn more about speed here: brainly.com/question/4931057

#SPJ1

5 0
1 year ago
Other questions:
  • A 10.1 g bullet leaves the muzzle of a rifle with a speed of 558.4 m/s. what constant force is exerted on the bullet while it is
    6·1 answer
  • A ball is thrown straight up from a point 2 m above the ground. The ball reaches a maximum height of 3 m above its starting poin
    10·1 answer
  • Do electric lights in some electronic devices change electricity into motion
    5·1 answer
  • Is 4x a term? or does it have to remove the 4 to be a term
    6·1 answer
  • If you use a horizontal force of 33.0 N to slide a 11.0 kg wooden crate across a floor at a constant velocity, what is the coeff
    9·1 answer
  • Determine the speed, wavelength, and frequency of light from a helium-neon laser as it travels through diamond. The wavelength o
    12·1 answer
  • A 2.0 kg pendulum has an initial total energy of 20 J. Calculate the energy lost as heat if the pendulum is 0.10 m high and is t
    11·1 answer
  • ((Bruv pls hurry on test)) Radioisotopes often emit alpha particles, beta particles, or gamma rays. The distance they travel thr
    8·2 answers
  • Which color in the rainbow has the shortest wavelength?
    13·1 answer
  • Distinguish between pressure and force in the case of wang yourself on a common bathroom scale
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!