Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
Answer:
Resistance increases with increase in temperature which depends on power supplied which also depends on voltage.
Thermal expansion will make resistance larger.
Explanation:
Light bulb is a good example of a filament lamp. If we plot the graph of voltage against current we will notice that resistance is constant at constant temperature.
The filament heats up when an electric current passes through it, and produces light as a result.
The resistance of a lamp increases as the temperature of its filament increases. The current flowing through a filament lamp is not directly proportional to the voltage across it.
tensile stress begins to appear in resistor as the temperature rises. Thus, the resistance value increases as the temperature rises. Resistance value can only decrease as the temperature rises in case of thin film resistor with aluminium substrate.
In case of a filament bulb, the resistance will increase as increase in length of the wire. The thermal expansion in this regard is linear expansivity in which resistance is proportional to length of the wire.
Resistance therefore get larger.
Answer:
1) ironing a shirt 2) writing on surfaces 3) working of an eraser
Answer: The hottest star is Archenar( blue) and the coolest star is Betelgeuse
Explanation:
Objects emit radiation that depends exclusively on their temperature. At an ambient temperature, the radiation emitted by an object is in the infrared spectrum (we could only see it with a special camera). If we heat it we will see that it first turns red (whose state we call “red hot”) because it is the lowest and least energetic wavelength of all.
If we continue to heat it, the wavelength that it emits to one with more energy will continue to increase and we will see that it turns yellow and then white. This is a signal that is emitting at all frequencies (but mainly in blue).
If we continue to warm a body that is "white hot", it would emit in the ultraviolet spectrum, with what would become ... black! then we would not see it emits light in the visible spectrum (well, we would see a very faint bluish light corresponding to the tail of the distribution of the spectrum it emits, but the peak of that spectrum would be in the ultraviolet).