<h2>Hey There!</h2><h2>_____________________________________</h2><h2>Question 7:
</h2>

The graph of
• The I-V for Ohmic Metal wire conductor at constant temperature always shows a straight line between the Current(I) plotted at Y axis and Voltage(V) plotted at X axis. Picture 1
• The I-V graph for Diode shows that first the current is zero but as we increase the potential difference(voltage), it results in the increase in the current. Picture 2
<h2>_____________________________________
</h2><h2>Question 8:
</h2>
A diode is a device that allows current to flow in only one direction.
Forward Bias, When a diode is forward bias (a voltage in the "forward" direction) then the P-side of the diode is attached to the positive terminal and N-side is fixed to the negative side of the battery which is connected, current flows freely through the device. The forward bias decreases the thickness of potential barrier(The potential barrier barrier in which the charge requires additional force for crossing the region)
Reverse Bias, When a diode is Reverse bias(a voltage in the "backward direction) then the P-side of the diode is connected to the negative terminal and N-side is connected to the positive terminal of the battery which is connected. The reverse bias increases the thickness of the potential barrier resulting in the flow of no current.

The Forward bias decreases the resistance of the diode whereas the reversed bias increases the resistance of the diode. As in forward biasing the current is easily flowing through the circuit whereas reverse bias does not allow the current to flow through it.
<h2>_____________________________________
</h2><h2>Best Regards,
</h2><h2>'Borz'
</h2>
-release of first light
-nucleosynthesis
-formation of stars and galaxies
<span>-formation of elementary particles</span>
Answer:
20.96 m/s^2 (or 21)
Explanation:
Using the formula (final velocity - initial velocity)/time = acceleration, we can plug in values and manipulate the problem to give us the answer.
At first, we know a car is going 8 m/s, that is its initial velocity.
Then, we know the acceleration, which is 1.8 m/s/s
We also know the time, 7.2 second.
Plugging all of these values in shows us that we need to solve for final velocity. We can do so by manipulating the formula.
(final velocity - initial velocity) = time * acceleration
final velocity = time*acceleration + initial velocity
After plugging the found values in, we get 20.96 m/s/s, or 21 m/s
Answer:
The Most Famous Astronomers of All Time. Karl Tate, SPACE.com. ...
Claudius Ptolemy. Bartolomeu Velho, Public Domain. ...
Nicolaus Copernicus. Public Domain. ...
Johannes Kepler. NASA Goddard Space Flight Center Sun-Earth Day. ...
Galileo Galilei. NASA
It is given that for the convex lens,
Case 1.
u=−40cm
f=+15cm
Using lens formula
v
1
−
u
1
=
f
1
v
1
−
40
1
=
15
1
v
1
=
15
1
−
40
1
v=+24.3cm
The image in formed in this case at a distance of 24.3cm in left of lens.
Case 2.
A point source is placed in between the lens and the mirror at a distance of 40 cm from the lens i.e. the source is placed at the focus of mirror, then the rays after reflection becomes parallel for the lens such that
u=∞
f=15cm
Now, using mirror’s formula
v
1
+
u
1
=
f
1
v
1
+
∞
1
=
15
1
v=+15cm
The image is formed at a distance of 15cm in left of mirror