Answer:
Ions
Explanation:
Ionic bonds are formed when an element loses electrons (usually a metal), and other elements gain these electrons(usually a nonmetal or the hydrogen). When the element loses electrons, it becomes a cation, an ion with a positive charge; and when the element gains electrons it becomes an anion, an ion with a negative charge.
The charge in the ions produces an electrostatic attraction between them, and that attraction is the force that gets them together in a bond.
I believe the answer is C. The bonds in the compound magnesium sulfate is ionic and covalent. Magnesium sulfate is soluble in water. When the said compound is dissolved in water, it dissociates into magnesium ions and sulfate ions. However, the bonds that held together the sulfate ions is covalent.
Answer:
MIXTURE
Explanation:
A mixture is a substance composed of a combination of other different substances. These component(s) of a mixture are physically combined, meaning that there is no chemical linkage between the individual components/constituents of a mixture.
This is the case of the gravel described in this question. The components of gravel can be separated using physical means because they are not chemically bonded to one another, hence, no chemical reactions are needed to separate different parts of gravel into pure substances. This makes gravel a MIXTURE.
Mixtures or combinations of various different metals or metallic substances form things called alloys. An alloy composed of mercury and other metal (or metals) forms "amalgam". When a true alloy is created, the component metals are combined together at a temperature which is greater than the melting point of all of them.
Also, it helps to remember the word "amalgamate", which means "to alloy (a metal) with mercury" according to Dictionary.com.
Hope this helped :)
(btw I'm like 3 brainliest answers away from my next rank so could you...you know... :)
the second statement is the correct one quarks are needed to balance charges in all subatomic particles such as neutrons, protons and electrons