The compound is sodium chloride
Answer:
Q = 8.8 kJ
Explanation:
Step 1: Data given
The specific heat of a solution = 4.18 J/g°C
Volume = 296 mL
Density = 1.03 g/mL
The temperature increases with 6.9 °C
Step 2: Calculate the mass of the solution
mass = density * volume
mass = 1.03 g/mL * 296 mL
mass = 304.88 grams
Step 3: Calculate the heat
Q = m*c*ΔT
⇒ with Q = the heat in Joules = TO BE DETERMINED
⇒ with m = the mass of the solution = 304.88 grams
⇒ with c = the specific heat of the solution = 4.18 J/g°C
⇒ with ΔT = the change in temperature = 6.9 °C
Q = 304.88 g * 4.18 J/g°c * 6.9 °C
Q = 8793.3 J = 8.8 kJ
Q = 8.8 kJ
CO2 is carbon dioxide which is most famous for being in gas form so i would figure if it was exposed to freezing temperatures it would turn into a liquid then maybe a solid<span />
<span>B. Hydrogen is electrically neutralized in the solution. Hydrogen is a chemical element with symbol H and atomic number 1. With a standard atomic weight of circa 1.008, hydrogen is the lightest element on the periodic table.</span>
We are given
0.2 M HCHO2 which is formic acid, a weak acid
and
0.15 M NaCHO2 which is a salt which can be formed by reacting HCHO2 and NaOH
The mixture of the two results to a basic buffer solution
To get the pH of a base buffer, we use the formula
pH = 14 - pOH = 14 - (pKa - log [salt]/[base])
We need the pKa of HCO2
From, literature, pKa = 1.77 x 10^-4
Substituting into the equation
pH = 14 - (1.77 x 10^-4 - log 0.15/0.2)
pH = 13.87
So, the pH of the buffer solution is 13.87
A pH of greater than 7 indicates that the solution is basic and a pH close to 14 indicates high alkalinity. This is due to the buffering effect of the salt on the base.