Balanced chemical reaction (dissociation): K₃PO₄(aq) → 3K⁺(aq) + PO₄³⁻(aq).
K₃PO₄ is potassium phosphate, <span>a water-soluble </span>ionic salt.
In water potassium phosphate, ionic compound, dissociates on positive potassium ion (cations) and negative phosphate ions (anions).
Potassium has positive charge (+1), compound has neutral charge.
Answer is: <span>he boiling point of a 1.5 m aqueous solution of fructose is </span>100.7725°C.
The boiling point
elevation is directly proportional to the molality of the solution
according to the equation: ΔTb = Kb · b.<span>
ΔTb - the boiling point
elevation.
Kb - the ebullioscopic
constant. of water.
b - molality of the solution.
Kb = 0.515</span>°C/m.
b = 1.5 m.
ΔTb = 0.515°C/m · 1.5 m.
ΔTb = 0.7725°C.
Tb(solution) = Tb(water) + ΔTb.
Tb(solution) = 100°C + 0.7725°C = 100.7725°C.
First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Thermal energy is defined as the total kinetic energy of all particles in an object. Even though the cup of water has a higher temperature, the bathtub has more thermal energy because it contains much more mass of water compared to the cup.
the answer is C) . I hope this was helpful!