Answer:
Answer:
see explanation and punch in the numbers yourself ( will be better for your test)
Explanation:
If you are given atoms you need to divide by Avogadro's number 6.022x10^23
then you will have moles of sulfur-- once you have moles multiply by the molar mass of sulfur to go from moles to grams
mm of sulfur is 32 g/mol
The lighter components are able to rise higher in the column before they are cooled to their condensing temperature, allowing them to be removed at slightly higher levels.
I hope this helps
Fluorine is a nonmetal and as such it would need to take in or obtain an electron from a metal to have a stable octet, or full number of 8 electrons in its valence shell. Thus due to the indifference of electrons and protons it becomes an anion, a negatively charged ion.
Answer:
3M
Explanation:
moles ÷ liters = molarity
4.8 ÷ 1.6 = 3M
Answer:
-5.51 kJ/mol
Explanation:
Step 1: Calculate the heat required to heat the water.
We use the following expression.

where,
- c: specific heat capacity
- m: mass
- ΔT: change in the temperature
The average density of water is 1 g/mL, so 75.0 mL ≅ 75.0 g.

Step 2: Calculate the heat released by the methane
According to the law of conservation of energy, the sum of the heat released by the combustion of methane (Qc) and the heat absorbed by the water (Qw) is zero
Qc + Qw = 0
Qc = -Qw = -22.0 kJ
Step 3: Calculate the molar heat of combustion of methane.
The molar mass of methane is 16.04 g/mol. We use this data to find the molar heat of combustion of methane, considering that 22.0 kJ are released by the combustion of 64.00 g of methane.
