15) a
16) b
17) a
Hope this helps
Answer:
<u></u>
- <u>1. The potential energy of the swing is the greatest at the position B.</u>
- <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>
Explanation:
Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.
The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>
Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,
1.<span> B. Turpentine
2. </span><span>C. Move on to another forested area.
3. </span><span>A. Starting a tree plantation
4. D. </span><span>Clear-cutting
</span>5. C. <span>Controlled burning</span>
Half of the moon is illuminated.
To calculate for the force in a spring, we use Hooke's Law which relates force and the displacement of the spring. It is said that the force is directly proportional to the displacement. So, it will have the equation F = kx where k is a constant and it is the spring constant.
F = kx
F = 45 N/m (0.03)
F = 1.35 N