The elapsed time when the particle returns to the origin is determined from the ratio of initial velocity and acceleration of the particle.
<h3>Time of motion of the particle</h3>
The time of motion of the particle is calculated by applying Newton's second law of motion.
F = ma
F = m(v)/t
where;
- t is time of motion of the particle
- m is mass of the particle
- v is velocity of the particle
a = v - u/t
v = u + at
when the particle returns to the origin, direction of u, = negative.
final velocity = 0
0 = -u + at
at = u
t = u/a
Learn more about force here: brainly.com/question/12970081
#SPJ11
Answer:
hence option A is correct
Explanation:
heat required from -9°C to 0°C ice = mass × specific heat of ice ×change in temperature
heat required from -9°C to 0°C ice = 7×2100×9 =132300 J =0.1323 MJ
( HERE SPECIFIC HEAT OF ICE IS A CONSTANT VALUE OF 2100
J/(kg °C )
heat required from 0°C ice to 0°C water = mass× specific heat of fusion of ice
= 7×3.36×10^5
= 2.352 × 10^6 J
= 2.352 MJ
TOTAL HEAT ENERGY REQUIRED = 0.1323 MJ +2.352 MJ
= 2.4843 MJ
hence option A is correct
C is the answer hope that helps you
The density increases.
When gases are compressed, their volume decreases, and the resulting pressure increases. The temperature will change if either P or V are held constant. Since the volume decreases, then density, or m/V, increases.
P×V ~ T
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.