Answer:
1.68 s
Explanation:
From newton's equation of motion,
a = (v-u)/t.................................. Equation 1
Making t the subject of the equation
t =(v-u)g............................. Equation 2
Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.
Note: Taking upward to be negative and down ward to be positive,
Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²
t = (0-8.20)/-9.8
t = -8.20/-9.8
t = 0.84 s.
But,
T = 2t
Where T = time taken for the bowling pin to return to the juggler's hand.
T = 2(0.84)
T = 1.68 s.
T = 1.68 s
so, 444 eggs would have been released in 37yrs
Answer:
(B) 13.9 m
(C) 1.06 s
Explanation:
Given:
v₀ = 5.2 m/s
y₀ = 12.5 m
(A) The acceleration in free fall is -9.8 m/s².
(B) At maximum height, v = 0 m/s.
v² = v₀² + 2aΔy
(0 m/s)² = (5.2 m/s)² + 2 (-9.8 m/s²) (y − 12.5 m)
y = 13.9 m
(C) When the shell returns to a height of 12.5 m, the final velocity v is -5.2 m/s.
v = at + v₀
-5.2 m/s = (-9.8 m/s²) t + 5.2 m/s
t = 1.06 s
It is an example of balanced force.
hope this helps. good luck
<span>For a point mass the moment of inertia is just
the mass times the square of perpendicular distance to the rotation axis, I =
mr^2. That point mass relationship becomes the basis for all other moments of
inertia since any object can be built up from a collection of point masses. So the
I = (1.2 kg)(0.66m/2)^2 = 0.1307 kg m2</span>