1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vladimir1956 [14]
3 years ago
11

The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0 above the horizon

tal, some of the tiny critters have reached a maximum height of 52.7 above the level ground.
A)What was the takeoff speed for such a leap? v= 3.79m/s
B) What horizontal distance did the froghopper cover for this world-record leap?
Physics
1 answer:
kirza4 [7]3 years ago
4 0

Answer:

A) 3.79 m/s  B) 1.33 m

Explanation:

A)

  • Horizontal movement:
  • Once in the air, no forces act on the froghopper, so it keeps moving with the same initial horizontal speed.
  • This horizontal component, is the projection of the velocity vector on the horizontal direction (x-axis):

        v_{ox} = v_{o} *cos (58.0 deg)

  • The horizontal displacement can be simply calculated as follows:

        x = v_{ox} *t

  • Vertical movement:
  • As the vertical and horizontal are independent each other (due to they are perpendicular, so there is no projection of one movement on the other), in the vertical direction, all happens as if would be a body thrown upward with a given initial vertical velocity.
  • This velocity can be found as the projection of the velocity vector on the vertical direction (y-axis):

        v_{oy} = v_{o} *sin (58.0 deg) (1)

  • Once in the air, the gravity will cause that the froghopper be slow down, till it reaches to the maximum height, where it will come momentarily to an stop.
  • In that moment, we can apply the following kinematic equation:

        v_{fy} ^{2} -v_{oy} ^{2} = 2*g*h_{max}

  • where vfy = 0, g = -9.8m/s2, hmax = 52.7 cm= 0.527 m
  • Replacing by the givens, we can solve for voy:

        v_{oy} =\sqrt{2*g*h_{max}} = \sqrt{2*9.8m/s2*0.527m} =3.21 m/s

  • From the equation (1), we can solve for the magnitude of the initial velocity, v₀:

        v_{o} = \frac{v_{oy}}{sin 58.0} =\frac{3.21m/s}{0.848} = 3.79 m/s

B)

  • With the value of the magnitude of the initial velocity, we can find the horizontal component vox, as follows:

        v_{ox} = v_{o} *cos (58.0 deg) =\\  \\ 3.79 m/s * cos (58.0deg) = 2.01 m/s

  • In order to know the horizontal distance travelled, we need to find the time that the insect was in the air.
  • We can use the equation for the vertical displacement, replacing this value by 0, as follows:

       y = 0 = v_{oy} *t -\frac{1}{2} * g *t^{2}

  • Replacing by  the givens, and rearranging terms, we can solve for t:

        t_{air} =\frac{2*v_{oy} }{g} = \frac{2*3.21 m/s}{9.8 m/s} = 0.66 s

  • Finally, we find the horizontal displacement, as follows:

       x_{max}  = v_{ox} *t_{air} = 2.01 m/s * 0.66 s \\ \\ x_{max} = 1.33 m

  • The horizontal distance covered by  the froghopper was 1.33 m.
You might be interested in
The current in a stream runs at 5 miles per hour. if a boat can go 15 miles per hour on still water, how fast can the boat go do
arsen [322]
Down stream it would be going 20 mph and up stream 10 mph
3 0
3 years ago
Whether calculating speed or acceleration, this data is required
Roman55 [17]
If an object is changing it is called velocity - whether by a constant amount or a varying
8 0
3 years ago
While walking along the shore of a lake Travis felt a cold breeze. What type of heat energy transfer is this an example of?
AfilCa [17]
Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.

Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
3 0
3 years ago
I need help for a assignment NOT A QUIZ
Debora [2.8K]

Answer:

what

ITS BLANK FOR ME I WISH I COULD HELP YOU

3 0
3 years ago
Read 2 more answers
Concept Simulation 2.3 offers a useful review of the concepts central to this problem. An astronaut on a distant planet wants to
Alexandra [31]

Answer:

1.40 m/s^2

Explanation:

Given data

Velocity= 17.4 m/s

time= 12.4 seconds

We want to find the acceleration of the rock

We know that

acceleration = velocity/time

Substitute

acceleration= 17.4/12.4

acceleration=1.40 m/s^2

Hence the acceleration is 1.40 m/s^2

7 0
2 years ago
Other questions:
  • _____ = distance / time<br> A. speed<br> B. motion<br> C. velocity<br> D. acceleration
    7·2 answers
  • What type of reaction requires the greatest energy to get started? A. fusion B. fission C. physical D. chemical
    9·2 answers
  • The wave speed of sound waves traveling through four different media was measured at a constant temperature. Results are summari
    12·1 answer
  • Which image represents the force on a positively charged particle caused by an approaching magnet?
    10·1 answer
  • What does friction oppose
    7·1 answer
  • On a coordinate plane, vertex A for triangle ABC is located at (6,4). Triangle ABC is dilated by a scale factor of 0.5 with the
    12·1 answer
  • Hi i can i have some help
    9·1 answer
  • WILL BE MARKED BRAINLIEST
    10·2 answers
  • (1 point) Unknown resistor in voltage divider Suppose that a power supply is connected across two resistors R1 and R2 that are c
    8·1 answer
  • Please solve the Problem.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!