1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OleMash [197]
2 years ago
11

Measuring Current as a Function of Voltage with a 20 Q Resistor

Physics
1 answer:
ki77a [65]2 years ago
4 0

Answer:

<u>Resistance at 25 V</u>

Explanation:

(10)

(A)

10

20

100

200

Determining Current in a Parallel Circuit

Observed

Resistor Set

(0)

Total

Resistance

Calculated

Current

(A)

Current

(A)

(10)

20, 20, 20

20, 20, 200

<h3>Voltage needed to raise current to 3.75 A (20, 20, 200 resistor set):</h3>

Calculated

Observed:

Calculating Power of Circuit Components

Current through Each Bulb

(A)

Table B

Table C

Table D

Observed Total Current

(A)

Current Experimental

(A)

Observed Current

through Each Resistor

(A)

Power Usage per Bulb

(

You might be interested in
Spring #1 has a force constant of k, and spring #2 has a force constant of 2k. Both springs are attached to the ceiling. Identic
Gre4nikov [31]

Answer:

The ratio of the energy stored by spring #1 to that stored by spring #2 is 2:1

Explanation:

Let the weight that is hooked to two springs be w.

Spring#1:

Force constant= k

let x1 be the extension in spring#1

Therefore by balancing the forces, we get

Spring force= weight

⇒k·x1=w

⇒x1=w/k

Energy stored in a spring is given by \frac{1}{2}kx^{2} where k is the force constant and x is the extension in spring.

Therefore Energy stored in spring#1 is, \frac{1}{2}k(x1)^{2}

                                                              ⇒\frac{1}{2}k(\frac{w}{k})^{2}

                                                              ⇒\frac{w^{2}}{2k}

Spring #2:

Force constant= 2k

let x2 be the extension in spring#2

Therefore by balancing the forces, we get

Spring force= weight

⇒2k·x2=w

⇒x2=w/2k

Therefore Energy stored in spring#2 is, \frac{1}{2}2k(x2)^{2}

                                                              ⇒\frac{1}{2}2k(\frac{w}{2k})^{2}

                                                              ⇒\frac{w^{2}}{4k}

∴The ratio of the energy stored by spring #1 to that stored by spring #2 is \frac{\frac{w^{2}}{2k}}{\frac{w^{2}}{4k}}=2:1

4 0
3 years ago
an object weighting 100g is thrown upwards from the ground at a speed of 100 m/s.where will the potential energy of the object b
Kay [80]

Answer:

333.3 m

Explanation:

Given

m =100g\ =\  0.1kg\\v = 100 m/s\\g = 10 m/s ^2

Potential energy =\frac{2}{3}\  of\  Kinetic\  energy......Equation(1)

We know that

Potential energy=mgh

Kinetic energy =\frac{1}{2} mv^{2}

Now From the Equation(1)

mgh=\frac{2}{3}*\frac{1}{2} mv^{2}\\  gh=\frac{v^{2} }{3} \\10 * h=\ \frac{10000}{3}\\ h=\ \frac{1000}{3} \\h=333.3\  m

3 0
3 years ago
Two objects, Object A and Object B, need to be identified. Object A's index of refraction is determined to be 1.77, and Object B
Slav-nsk [51]

The correct answer is

C. Light can pass through Object B faster than it can pass through Object A.

In fact, the index of refraction of a material is defined as:

n=\frac{c}{v}

where c is the speed of light in vacuum and v is the speed of light in the material. Rearranging the equation, we can write the speed of light in the material as:

v=\frac{c}{n}

So we that, the smaller the refractive index n, the greater the speed of light in the material, v. In this problem, object B has lower refractive index than object A, so light travels faster in object B.

4 0
4 years ago
Read 2 more answers
Which is the truest statement? Standing is health-enhancing because it uses energy. Jogging is not a good way tp enhance your he
Setler [38]
A. <span>Standing is health-enhancing because it uses energy.

Because standing can burn a lot of calories.</span>

5 0
3 years ago
As an interstellar cloud of hydrogen gas shrinks in size, its rate of rotation
FinnZ [79.3K]

Answer:

INCREASES, BECAUSE ITS ANGULAR MOMENTUM IS CONSERVED.

Explanation: Interstellar cloud of Hydrogen is an accumulation of Hydrogen gas in the cloud.

As the Interstellar cloud of Hydrogen shrinks (reduces) in size,the rate of rotation of the shrinked Interstellar cloud Increases because its angular momentum is conserved. GASEOUS MOLECULES MAKE UP ABOUT 99% OF THE INTERSTELLAR CLOUD WITH HYDROGEN HAVING ABOUT 90% OF THE VOLUME OF GASES IN THE INTERSTELLAR CLOUD.

4 0
3 years ago
Other questions:
  • How much heat is absorbed by 34g iron skillet its temperature rises from 12c to 24 c ?
    13·1 answer
  • Kyle is flying a helicopter and is rising at 5.0m/s when he releases the bag. After 2.0s
    9·2 answers
  • Wires 1, 2, and 3 each have current moving through them to the right. I1 = 10 A, I2 = 5 A, and I3 = 8 A. Wire 2 is 15 cm long an
    13·1 answer
  • Identify the techniques used to try to locate extra solar (exo) planets
    15·2 answers
  • HELP!!!
    5·1 answer
  • What is this feature?
    10·1 answer
  • What part of the Milky Way allows for determination of its rotational direction? A. Celestial body B. Galactic body C. Galactic
    13·2 answers
  • 1.what are barriers that you have encountered in dancing?
    10·1 answer
  • A particle is constrained to move round a circle radius 382400km and makes a single revolution in 27.3 days. (i). Find the veloc
    7·1 answer
  • A circuit connected to a battery of 1.9 voltage. has a current of 0.07 amps. What is the resistance
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!