1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maurinko [17]
3 years ago
13

An earthquake’s epicenter is _____.

Physics
2 answers:
Evgen [1.6K]3 years ago
4 0
The point in which it originates.
Anastasy [175]3 years ago
4 0
Hi, hope you’re having a good day.

An earthquake epicenter is the point on the earth's surface above the hypocenter (or focus), point in the crust where a seismic rupture begins.

Idk, you could search more on the internet but if you need help understanding more, you can just comment it and I’ll try to reply ASAP.


Anyways, thanks for reading, have an amazing day, and stay happy. ❤️❤️
You might be interested in
If this energy were used to vaporize water at 100.0 ∘C, how much water (in liters) could be vaporized? The enthalpy of vaporizat
Zanzabum

Answer:

0.429 L of water

Explanation:

First to all, you are not putting the value of the energy given to vaporize water, so, to explain better this problem, I will assume a value of energy that I took in a similar exercise before, which is 970 kJ.

Now, assuming that the water density is 1 g/mL, this is the same as saying that 1 g of water = 1 mL of water

If this is true, then, we can assume that 1 kg of water = 1 L of water.

Knowing this, we have to use the expression to get energy which is:

Q = m * ΔH

Solving for m:

m = Q / ΔH

Now "m" is the mass, but in this case, the mass of water is the same as the volume, so it's not neccesary to do a unit conversion.

Before we begin with the calculation, we need to put the enthalpy of vaporization in the correct units, which would be in grams. To do that, we need the molar mass of water:

MM = 18 g/mol

The enthalpy in mass:

ΔH = 40.7 kJ/mol / 18 g/mol = 2.261 kJ/g

Finally, solving for m:

m = 970 / 2.261 = 429 g

Converting this into volume:

429 g = 429 mL

429 / 1000 = 0.429 L of water

3 0
3 years ago
Sphere A with mass 80 kg is located at the origin of an xy coordinate system; sphere B with mass 60 kg is located at coordinates
IRINA_888 [86]

Answer:

Fc = [ - 4.45 * 10^-8 j ] N  

Explanation:

Given:-

- The masses and the position coordinates from ( 0 , 0 ) are:

       Sphere A : ma = 80 kg , ( 0 , 0 )

       Sphere B : ma = 60 kg , ( 0.25 , 0 )

       Sphere C : ma = 0.2 kg , ra = 0.2 m , rb = 0.15

- The gravitational constant G = 6.674×10−11 m3⋅kg−1⋅s−2

Find:-

what is the gravitational force on C due to A and B?

Solution:-

- The gravitational force between spheres is given by:

                       F = G*m1*m2 / r^2

Where, r : The distance between two bodies (sphere).

- The vector (rac and rbc) denote the position of sphere C from spheres A and B:-

 Determine the angle (α) between vectors rac and rab using cosine rule:

                   cos ( \alpha ) = \frac{rab^2 + rac^2 - rbc^2}{2*rab*rac} \\\\cos ( \alpha ) = \frac{0.25^2 + 0.2^2 - 0.15^2}{2*0.25*0.2}\\\\cos ( \alpha ) = 0.8\\\\\alpha = 36.87^{\circ \:}

 Determine the angle (β) between vectors rbc and rab using cosine rule:

                   cos ( \beta  ) = \frac{rab^2 + rbc^2 - rac^2}{2*rab*rbc} \\\\cos ( \beta  ) = \frac{0.25^2 + 0.15^2 - 0.2^2}{2*0.25*0.15}\\\\cos ( \beta  ) = 0.6\\\\\beta  = 53.13^{\circ \:}

- Now determine the scalar gravitational forces due to sphere A and B on C:

       Between sphere A and C:

                  Fac = G*ma*mc / rac^2

                  Fac = (6.674×10−11)*80*0.2 / 0.2^2  

                  Fac = 2.67*10^-8 N

                  vector Fac = Fac* [ - cos (α) i + - sin (α) j ]

                  vector Fac = 2.67*10^-8* [ - cos (36.87°) i + -sin (36.87°) j ]

                  vector Fac = [ - 2.136 i - 1.602 j ]*10^-8 N

       Between sphere B and C:

                  Fbc = G*mb*mc / rbc^2

                  Fbc = (6.674×10−11)*60*0.2 / 0.15^2  

                  Fbc = 3.56*10^-8 N

                  vector Fbc = Fbc* [ cos (β) i - sin (β) j ]

                  vector Fbc = 3.56*10^-8* [ cos (53.13°) i - sin (53.13°) j ]

                  vector Fbc = [ 2.136 i - 2.848 j ]*10^-8 N

- The Net gravitational force can now be determined from vector additon of Fac and Fbc:

                  Fc = vector Fac + vector Fbc

                  Fc = [ - 2.136 i - 1.602 j ]*10^-8  + [ 2.136 i - 2.848 j ]*10^-8

                  Fc = [ - 4.45 * 10^-8 j ] N  

3 0
3 years ago
.
WARRIOR [948]

Answer:

Explanation:distance-time =speed

a,V =s/t

V=2m/2s

V=1m/s

b,v=s/t

V=80m/40s

V= 2m/s

The average speed is 2m/s

8 0
2 years ago
MATHPHYSSSSSSSS PLEASEEEEEE IM SORRY YOU PROBABLY HATE ME
inysia [295]

Answer:

3.1 m/s

Explanation:

First, find the time it takes for the cat to land.  Take down to be positive.

Given:

Δy = 0.61 m

v₀ = 0 m/s

a = 9.81 m/s²

Find: t

Δy = v₀ t + ½ at²

(0.61 m) = (0 m/s) t + ½ (9.81 m/s²) t²

t = 0.353 s

Now find the horizontal velocity needed to travel 1.1 m in that time.

Given:

Δx = 1.1 m

a = 0 m/s²

t = 0.353 s

Find: v₀

Δx = v₀ t + ½ at²

(1.1 m) = v₀ (0.353 s) + ½ (0 m/s²) (0.353 s)²

v₀ = 3.1 m/s

3 0
3 years ago
I need help with the circled one
Whitepunk [10]
Yes the answer is yes 
7 0
3 years ago
Other questions:
  • The resistance of physiological tissues is quite variable. The resistance of the internal tissues of humans, primarily composed
    10·1 answer
  • A rock is thrown straight upward off the edge of a balcony that is 5 m above the ground. The rock rises 10 m, then falls all the
    7·1 answer
  • A horse ran 5.75m/s for 3.5min, how far did it travel
    12·1 answer
  • An 85-kg man plans to tow a 109 000-kg airplane along a runway by pulling horizontally on a cable attached to it. Suppose that h
    11·1 answer
  • Under which condition would time periods of daylight and darkness be equal everywhere on Earth all year? A. if Earth revolved ar
    11·2 answers
  • When a unbalanced force act on an object , the object moves with what motion?
    6·1 answer
  • The sense of smell helps protect us against danger. Explain why.
    13·1 answer
  • Even at such low fractions of the speed of light these stars are moving quite quickly (thousands of kilometers a second) compare
    8·1 answer
  • Distinguish
    5·1 answer
  • A truck skids for a distance of 25 m with the road pushing on its tires with force of 1500 N as its brakes
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!