Answer:
α(0) = 0 rad/s²
α(5) = 15 rad/s²
Explanation:
The angular velocity of the flywheel is given as follows:
w(t) = A + B t²
where, A and B are constants.
Now, for the angular acceleration, we must take derivative of angular velocity with respect to time:
Angular Acceleration = α (t) = dw/dt
α(t) = (d/dt)(A + B t²)
α(t) = 2 B t
where,
B = 1.5
<u>AT t = 0 s</u>
α(0) = 2(1.5)(0)
<u>α(0) = 0 rad/s²</u>
<u></u>
<u>AT t = 5 s</u>
α(5) = 2(1.5)(5)
<u>α(5) = 15 rad/s²</u>
Answer:1.5×10 to the power of 17(unit-Hertz/H)
Explanation:V=F×Wavelength
F=V/Wavelength=3×10 to power/2×10 to power of -9=1.5×10 to power of 17
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
Answer: Methane
Explanation: I just took the AP€X quiz and Methane was the correct answer!
Answer:
202.95J
Explanation:
The formulae for the energy absorbed by the iron skillet is;
q=m*c*ΔФ where q=energy absorbed, m is mass of iron skillet, c is specific heat capacity and ΔФ is change in temperature
Given that;
m= 41g
ΔФ=20°-9°=11°
c=0.45 J/g°C
q= 41×0.45×11
q= 202.95 J