Answer:
A = 2
B = 1
Explanation:
The atomic number of lithium is 3.
Its atomic mass is 7 amu.
It is present in group group 1.
It has one valance electron.
Lithium is alkali metal it form salts.
It is silvery soft metal. It has lowest density as compared to all other metals.
It react vigorously with water.
It is used in rechargeable batteries which are used in camera, mobile, laptops etc.
The electronic configuration of Li:
Li₃ = 1s² 2s¹
Thus,
A = 2
B = 1
Answer:
The pressure increases to 3.5 atm.
Solution:
According to Gay-Lussac's Law, " At constant volume and mass the pressure of gas is directly proportional to the applied temperature".
For initial and final states of a gas the equation is,
P₁ / T₁ = P₂ / T₂
Solving for P₂,
P₂ = P₁ T₂ / T₁ ----- (1)
Data Given;
P₁ = 3 atm
T₁ = 27 °C + 273 = 300 K
T₂ = 77 °C + 273 = 350 K
Putting values in eq. 1,
P₂ = (3 atm × 350 K) ÷ 300 K
P₂ = 3.5 atm
Answer
is: The molar solubility of calcium phosphate is 108s⁵ = Ksp.
<span>
Balanced chemical reaction: Ca</span>₃(PO₄)₂(s) → 3Ca²⁺(aq) + 2PO₄³⁻(aq).<span>
[Ca²</span>⁺] =
3s(Ca₃(PO₄)₂) =
3s.<span>
[PO</span>₄³⁻] = 2s.<span>
Ksp = [Ca²</span>⁺]³ · [PO₄³⁻]².<span>
Ksp = (3s)³ · (2s)².
Ksp = 108s</span>⁵.
s = ⁵√(Ksp ÷ 108).
<u>Answer:</u> The molarity of barium hydroxide solution is 0.118 M.
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is 
We are given:

Putting values in above equation, we get:

Hence, the molarity of
solution will be 0.118 M.
Answer:
True
Explanation:
Your welcome! :) Good luck!