Answer:
Zoning laws establish b. the uses an area of land can be put to.
Answer:
ΔV=0.484mV
Explanation:
The potential difference across the end of conductor that obeys Ohms law:
ΔV=IR
Where I is current
R is resistance
The resistance of a cylindrical conductor is related to its resistivity p,Length L and cross section area A
R=(pL)/A
Given data
Length L=3.87 cm =0.0387m
Diameter d=2.11 cm =0.0211 m
Current I=165 A
Resistivity of aluminum p=2.65×10⁻⁸ ohms
So
ΔV=IR

ΔV=0.484mV
To stop the car it would be 100m because if the car is going to 65km/h then it would still be 100km/h
The mass of a particle is 2.2x10⁻¹⁵ kg
Consider smoke particles as an ideal gas
The translational RMS speed of the smoke particles is 2.45x10⁻³ m/s.
<em>v= √3kT/m</em>
<em>where k= 1.38x10⁻²³J/K, T is 288K, and m is the mass of the smoke particle</em>
<em>2.45x10⁻³ = √3x1.38x10⁻²³x288/m</em>
<em>m= 2.2x10⁻¹⁵ kg</em>
Therefore, the mass of a particle is 2.2x10⁻¹⁵ kg.
To learn more about the translational root mean square speed of gases, visit brainly.com/question/6853705
#SPJ4
Answer:
Exposure time limitation, shielding and distance.
Explanation:
- Limitation of exposure time, since the dose received is directly proportional to the exposure time, so that, at a shorter time, lower dose. For this reason, planning is suggested, to reduce time.
-
Use of shields. This allows a reduction in the dose received by the technician when filtered by the barrier (screen). There are two types of shields or screens, the primary barriers (attenuate the radiation of the primary beam) and the secondary barriers (avoid diffuse radiation).
-
Distance to the radioactive source. The dose received is inversely proportional to the square of the distance to the radioactive source. Therefore, if the distance is doubled, the dose received will decrease by a quarter. Reason for this, it is advisable to use devices or remote controls whenever possible.