Answer:
I = W / 4π R_{s}², P = W / 2π c R_{s}², Io /I_{earth} = 10⁴
Explanation:
The intensity is defined as the ratio between the emitted power and the area of the spherical surface
I = P / A
Since the emitted power is constant and has a value of W for this case, let's look for the area of the sphere on the surface of the sun
A = 4π
²
I = W / 4π R_{s}²
.- The radiation pressure for total absorption is
P = S / c
Where S is the Pointer vector that is equal to the intensity
Let's replace
P = W / 2π c R_{s}²
.- We repeat for r = R_{s}/2
I₂ = W / 4π (R_{s}/ 2)²
I₂ = 4 W / 4π R_{s}²
I₂ = 4 Io
I₀ = W / 4piRs2
We calculate the radiation pressure
P₂ = I₂ / c
P₂ = 4 I₀ / c
P₂ = 4 (W / 4pi c Rs2)
.- the relationship between these magnitudes is
I₂ / I₀ = 4
P₂ / P₀ = 4
Let's calculate the intensity on the surface where the Earth is
r = 1.50 10¹¹ m
= W / 4π r²
Io / I_{earth} = r² /
²
Io /I_{earth} = (1.5 10¹¹ / 6.96 10⁸) 2
Io /I_{earth} = 4.6 10⁴
Io /I_{earth} = 10⁴
Answer:
it's x that is the right answer
Answer:
NO
Explanation:
Acceleration is change in velocityΔv in respect to timeΔt
so if the velocity of the car is greater than the truck it does not mean that the car acceleration is greater than the truck.
Sometimes with constant velocity it means no accelaration ,but the truck may have accelaration
so, higher velocity of the car does not mean higher acceleration
Volume = 873 - 50 = 723 cm^3
A window is the most transparent object from these, so that is the answer.