The emerging velocity of the bullet is <u>71 m/s.</u>
The bullet of mass <em>m</em> moving with a velocity <em>u</em> has kinetic energy. When it pierces the block of wood, the block exerts a force of friction on the bullet. As the bullet passes through the block, work is done against the resistive forces exerted on the bullet by the block. This results in the reduction of the bullet's kinetic energy. The bullet has a speed <em>v</em> when it emerges from the block.
If the block exerts a resistive force <em>F</em> on the bullet and the thickness of the block is <em>x</em> then, the work done by the resistive force is given by,

This is equal to the change in the bullet's kinetic energy.

If the thickness of the block is reduced by one-half, the bullet emerges out with a velocity v<em>₁.</em>
Assuming the same resistive forces to act on the bullet,

Divide equation (2) by equation (1) and simplify for v<em>₁.</em>

Thus the speed of the bullet is 71 m/s
Answer:
The sum of the initial and final velocity is divided by 2 to find the average. The average velocity calculator uses the formula that shows the average velocity (v) equals the sum of the final velocity (v) and the initial velocity (u), divided by 2.
Run electrity through or is postive to the circuit
"2 km/hr/s" means that in each second, its engines can increase its speed by 2 km/hr.
If it keeps doing that for 30 seconds, its speed has increased by 60 km/hr.
On top of the initial speed of 20 km/hr, that's 80 km/hr at the end of the 30 seconds.
This whole discussion is of <em>speed</em>, not velocity. Surely, in high school physics,
you've learned the difference by now. There's no information in the question that
says anything about the train's <em>direction</em>, and it was wrong to mention velocity in
the question. This whole thing could have been taking place on a curved section
of track. If that were the case, it would have taken a team of ace engineers, cranking
their Curtas, to describe what was happening to the velocity. Better to just stick with
speed.