Answer:
the right control panel.
Place the listener at a certain distance away from the speakers. Slowly move the listener up and down. What do y
Explanation:
Answer:
m =8.81*10^{-6}grams
time t = 52.8 year
Explanation:
GIVEN DATA:
the half life of the CO-60 is, T_1/2 = 5.27 years = 1.663 e+8 s
activity dN/dt = 1 mCi = 3.7 X 10^7 decay/s
activity , 


= ( 3.7 X 10^7 )(1.663*10^8 ) / ln2
= 8.877*10^{16}
Number of moles:
n = N/NA = 8.877*10^{16} / 6.022X10^23 = 1.474*10^{-7} mol
mass of the CO-60 is,
m = n*M = [1.474*10^{-7} mol]*[59.93 grams /mol] = 8.81*10^{-6}grams
-----------------------------------------------------------------------------------------
time t = -[T1/2 / ln2]*ln[N/N0]
= - [5.3 years / ln2]*ln[1x10-6/1x10-3]
= 52.8 year
The period of the tan function is π so (∅ + π) would yield the same value as ∅
F(∅ + π) = 3
Answer: 6m/s
Explanation:
Using the law of conservation of momentum, the change in momentum of the bodies before collision is equal to the change in momentum after collision.
After collision, the two objects will move at the same velocity (v).
Let mA and mB be the mass of the two objects
uA and uB be their velocities before collision.
v be their velocity after collision
Since the two objects has the same mass, mA= mB= m
Also since object A is at rest, its velocity = 0m/s
Velocity of object B = 12m/s
Mathematically,
mAuA + mBuB = (mA+mB )v
m(0) + m(12) = (m+m)v
0+12m = (2m)v
12m = 2mv
12 = 2v
v = 6m/s
Therefore the speed of the composite body (A B) after the collision is 6m/s