1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Snowcat [4.5K]
3 years ago
8

Consider the electric force between a pair of charged particles a certain

Physics
1 answer:
Crazy boy [7]3 years ago
5 0

Answer:

Doubled

Explanation:

F = (kq1q2) / r^2

F and q (Either q1 or q2) are directly proportional, so double the charge would also double the electruc force between the charges.

You might be interested in
A 64 kg swimmer jumps, with a velocity of 4.2 m/s, off the front of a 25 kg kayak when the kayak is moving forward at a velocity
Crank

Answer:

3.88m/s

Explanation:

Using the law of conservation of momentum

m1u1+m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and 2 are the initial velocities

v is the final velocity

Given

m1 = 64kg

u1 = 4.2m/s

m2 = 25kg

u2 = 3.2m/s

Required

Final velocity v

Substitute the given values into the formula

64(4.2)+25(3.2) = (65+25)v

268.8+80 = 90v

348.8 = 90v

v = 348.8/90

v = 3.88m/s

Hence the velocity of the kayak after the swimmer jumps off is 3.88m/s

8 0
3 years ago
I need answers and solvings to these questions​
den301095 [7]

1) The period of a simple pendulum depends on B) III. only (the length of the pendulum)

2) The angular acceleration is C) 15.7 rad/s^2

3) The frequency of the oscillation is C) 1.6 Hz

4) The period of vibration is B) 0.6 s

5) The diameter of the nozzle is A) 5.0 mm

6) The force that must be applied is B) 266.7 N

Explanation:

1)

The period of a simple pendulum is given by

T=2\pi \sqrt{\frac{L}{g}}

where

T is the period

L is the length of the pendulum

g is the acceleration of gravity

From the equation, we see that the period of the pendulum depends only on its length and on the acceleration of gravity, while there is no dependence on the mass of the pendulum or on the amplitude of oscillation. Therefore, the correct option is

B) III. only (the length of the pendulum)

2)

The angular acceleration of the rotating disc is given by the equation

\alpha = \frac{\omega_f - \omega_i}{t}

where

\omega_f is the final angular velocity

\omega_i is the initial angular velocity

t is the time elapsed

For the compact disc in this problem we have:

\omega_i = 0 (since it starts from rest)

\omega_f = 300 rpm \cdot \frac{2\pi rad/rev}{60 s/min}=31.4 rad/s is the final angular velocity

t = 2 s

Substituting, we find

\alpha = \frac{31.4-0}{2}=15.7 rad/s^2

3)

For a simple harmonic oscillator, the acceleration and the displacement of the system are related by the equation

a=-\omega^2 x

where

a is the acceleration

x is the displacement

\omega is the angular frequency of the system

For the oscillator in this problem, we have the following relationship

a=-100 x

which implies that

\omega^2 = 100

And so

\omega = \sqrt{100}=10 rad/s

Also, the angular frequency is related to the frequency f by

f=\frac{\omega}{2\pi}

Therefore, the frequency of this simple harmonic oscillator is

f=\frac{10}{2\pi}=1.6 Hz

4)

When the mass is hanging on the sping, the weight of the mass is equal to the restoring force on the spring, so we can write

mg=kx

where

m is the mass

g=9.8 m/s^2 is the acceleration of gravity

k is the spring constant

x = 8.0 cm = 0.08 m is the stretching of the spring

We can re-arrange the equation as

\frac{k}{m}=\frac{g}{x}=\frac{9.8}{0.08}=122.5

The angular frequency of the spring is given by

\omega=\sqrt{\frac{k}{m}}=\sqrt{122.5}=11.1 Hz

And therefore, its period is

T=\frac{2\pi}{\omega}=\frac{2\pi}{11.1}=0.6 s

5)

According to the equation of continuity, the volume flow rate must remain constant, so we can write

A_1 v_1 = A_2 v_2

where

A_1 = \pi r_1^2 is the cross-sectional area of the hose, with r_1 = 5 mm being the radius of the hose

v_1 = 4 m/s is the speed of the petrol in the hose

A_2 = \pi r_2^2 is the cross-sectional area of the nozzle, with r_2 being the radius of the nozzle

v_2 = 16 m/s is the speed in the nozzle

Solving for r_2, we find the radius of the nozzle:

\pi r_1^2 v_1 = \pi r_2^2 v_2\\r_2 = r_1 \sqrt{\frac{v_1}{v_2}}=(5)\sqrt{\frac{4}{16}}=2.5 mm

So, the diameter of the nozzle will be

d_2 = 2r_2 = 2(2.5)=5.0 mm

6)

According to the Pascal principle, the pressure on the two pistons is the same, so we can write

\frac{F_1}{A_1}=\frac{F_2}{A_2}

where

F_1 is the force that must be applied to the small piston

A_1 = \pi r_1^2 is the area of the first piston, with r_1= 2 cm being its radius

F_2 = mg = (1500 kg)(9.8 m/s^2)=14700 N is the force applied on the bigger piston (the weight of the car)

A_2 = \pi r_2^2 is the area of the bigger piston, with r_2= 15 cm being its radius

Solving for F_1, we find

F_1 = \frac{F_2A_1}{A_2}=\frac{F_2 \pi r_1^2}{\pi r_2^2}=\frac{(14700)(2)^2}{(15)^2}=261 N

So, the closest answer is B) 266.7 N.

Learn more about pressure:

brainly.com/question/4868239

brainly.com/question/2438000

#LearnwithBrainly

5 0
3 years ago
a surface recieving sound is moved from it original position to a position three times farther away from the source of the sound
Delicious77 [7]
Sound intensity = 1/(r^2)

That is Sound intensity is indirectly proportional to  the distance. Therefore, sound becomes 9 times less intense.
7 0
3 years ago
Where might water be found on the moon
Cerrena [4.2K]
Water Could be Found in the frozen Ice on the moon. it would most likely be underground however
8 0
3 years ago
Read 2 more answers
If a 75 W lightbulb is 15% efficient, how many joules of light energy does the bulb produce every minute?
stiks02 [169]

Answer:

1 W = 1 J / sec       Definition of watt is 1 joule / sec

So if a bulb uses 75 J / sec it must use

75 J/s * 60 sec / min = 4500 J/min    energy used by bulb

If bulb is 15% efficient then the light delivered is

P = 4500 J / min * .15 = 675 J / min

4 0
3 years ago
Other questions:
  • You riding in a car traveling at a speed of 73 mi/hr in a. 60 mi/hr zone, when suddenly you spot a police car parked 20 ft ahead
    15·2 answers
  • An asteroid revolves around the Sun with a mean orbital radius twice that of Earth’s. Predict the period of the asteroid in Eart
    8·1 answer
  • Every substance has a specific value of heat required to change the temperature of 1 gram of the substance by 1 degree Celsius.
    6·1 answer
  • If the distance between the bounces were 1.95 m instead of 1.30 m, but the height remained at 1.30 m, which of your answers to P
    5·1 answer
  • The only type of investigation that involves a control group is
    9·2 answers
  • A hair dryer operating from 120 v has two settings, hot and warm. in which setting is the resistance likely to be smaller?
    5·1 answer
  • ____________are necessary to explain research findings.
    7·1 answer
  • A ball thrown horizontally at 18.5 m/s from the roof of a building lands 38.9 m from the base of the building.
    12·1 answer
  • What is the acceleration of a car moving in a straight line at a constant velocity of 50 km/hr for 10 seconds?
    13·1 answer
  • Which method of heat transfer transmits heat from the lower layers of air to the upper layers of air as the lower layers of air
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!