At this point in the story, Beasy has driven his car (2+6+4) = 12 km.
He is parked at the thrift store, (2+4) = 6 km East and 6 km North of his starting point.
As the crow flies, the thrift store is √(6km² + 6km²) in a straight line from the starting point.
That's √(72 km²) , which works out to 8.485 km . When rounded to the nearest whole km, he can phone up his wife and tell her he's "eight kilometers from home can you hear me now ?".
Displacement is a vector, so to answer the question completely, we also need to state its direction.
The angle from home to the thrift store, relative to East, is arctan(6km/6km).
That's 45 degrees.
The full displacement vector is <em>8.485 km Northeast.</em>
Answer:

Explanation:
The magnitude of the gravitational force between two objects is given by the equation:

where
G is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between the objects
The gravitational force is always attractive.
In this problem, we have:
is the mass of the Earth
is the mass of the Moon
is the separation between the Earth and the Moon
Therefore, the gravitational force between them is

The final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
<h3>
Time of motion of the girl</h3>
The time of motion of the girl is calculated as follows;
h = vt + ¹/₂gt²
where;
- v is initial vertical velocity = 0
- t is time of motion
- g is acceleration due to gravity
Substitute the given parameters and solve for time of motion;
50.8 = 0 + ¹/₂(9.8)t²
2(50.8) = 9.8t²
101.6 = 9.8t²
t² = 101.6/9.8
t² = 10.367
t = √10.367
t = 3.22 seconds
<h3>Final vertical velocity of the skydiver</h3>
vf = vi + gt
where;
vi is the initial vertical velocity = 0
vf = 0 + 9.8(3.22)
vf = 31.56 m/s
Thus, the final vertical velocity of the skydiver at 50.8 m of fall is 31.56 m/s.
Learn more about vertical velocity here: brainly.com/question/24949996
#SPJ1
Answer:
Scalar quantities have a size or magnitude only and need no other information to specify them. Thus, 10 cm, 50 sec, 7 litres and 3 kg are all examples of scalar quantities.
Explanation:
Answer:

Explanation:
Given:
mass of first particle, 
mass of second particle, 
mass of third particle, 
coordinate position of first particle in meters, 
coordinate position of second particle in meters, 
coordinate position of third particle in meters, 
<u>Now, gravitational force on particle 3 due to particle 1:</u>



towards positive Y axis.
<u>gravitational force on particle 3 due to particle 2:</u>



towards positive X axis.
<u>Now the net force</u>



<em>For angle in counterclockwise direction from the +x-axis</em>
