Answer: 
Explanation:
Alpha Decay: In this process, a heavier nuclei decays into lighter nuclei by releasing alpha particle. The mass number is reduced by 4 units and atomic number is reduced by 2 units.
General representation of an element is given as:
where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
General representation of alpha decay :
The balanced nuclear equation when the isotope Strontium-90 decays by Q- decay is :

Answer:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Explanation:
First of all, let us balance the equation to give;
2Sb(OH)3 (s) + 3Na2S (aq) = Sb2S3 + 3NaOH
Now, we can observe the presence of positive Sodium ions (Na+) and negative hydroxyl ions (OH-) on both left and right sides of the equation.
Now, the two ions will cancel out. These ions are not really involved in the overall reaction and thus do not require being written in the overall equation. Hence, the overall net ionic reaction can now be written as:
2Sb^(+3) (aq) + 3S^(-2) (aq) = Sb_2•S_3
Answer:
Types of Hydrolysis
There are several types of hydrolysis, and we will look at them in brief below.
Salts: This is the most common type of hydrolysis. Hydrolysis of salts generally refers to the reaction of salt with water where it involves the interaction between cations or anions of salts and water. During hydrolysis, a salt breaks down to form ions, completely or partially depending upon the solubility factor.
Acid and Base: Acid–base-catalysed hydrolysis can be found during the hydrolysis of esters or amides. Here, the process of hydrolysis occurs when water or hydroxyl ion reacts with the carbon of the carbonyl group of the ester or amide where new compounds are formed. The products of both hydrolysis are compounds with carboxylic acid groups.
ATP: Most biochemical reactions that occur in living organisms are in the form of ATP hydrolysis which takes place with the help of enzymes acting as catalysts. The catalytic action of enzymes allows the hydrolysis or breaking down of proteins, lipids, oils, fats and carbohydrates.
Explanation:
Answer:Nuclear binding energy is the energy needed to separate nuclear particles
The strong nuclear force holds an atom’s protons and neutrons together
Nuclear binding energy can be calculated using E=mc2
Explanation:
Answer:
Molecular Weight
Explanation:
Chromium(III) Carbonate Cr2(CO3)3 Molecular Weight -- EndMemo.