<u>Answer:</u> The hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
<u>Explanation:</u>
We are given:
Concentration of barium hydroxide = 0.00066 M
The chemical equation for the dissociation of barium hydroxide follows:

1 mole of barium hydroxide produces 1 mole of barium ions and 2 moles of hydroxide ions
pOH is defined as the negative logarithm of hydroxide ion concentration present in the solution
To calculate pOH of the solution, we use the equation:
![pOH=-\log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-%5Clog%5BOH%5E-%5D)
We are given:
![[OH^-]=(2\times 0.00066)=1.32\times 10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D%282%5Ctimes%200.00066%29%3D1.32%5Ctimes%2010%5E%7B-3%7DM)
Putting values in above equation, we get:

Hence, the hydroxide ion concentration and pOH of the solution is
and 2.88 respectively
Answer:
Explanation:
Metal elements form positively charged ions called cations because they are located on the left side of the periodic table These elements all have valence electrons in an s orbital. These electrons are relatively easy for the atom to lose to achieve a stable octet of electrons in its outermost energy shell.
Answer: Option (c) is the correct answer.
Explanation:
Plants used to prepare food in the presence of sunlight. Therefore, plants uses solar energy to make food.
Due to solar energy various chemical reactions take place in the food.
Thus, we can conclude that chemical energy is stored in our food and this chemical energy start out as light energy from the sun.
Answer:
blah blah blah blah blah blah blah blah blah blah blah
Increased upwelling in a coastal area results to more aquatic life. Upwelling is the process in which deep, cold water rises towards the surface. It is an oceanographic phenomenon that involves wind driven motion of the dense, cooler and usually nutrient-rich water towards the ocean surface replacing the warmer usually nutrient depleted surface water.