Answer:-A. It is less than 890 kJ/mol because the amount of energy required to break bonds is less than the amount of energy released in forming bonds.
Explanation: Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
In the formation of new bonds more energy is released than is required to break the existing bonds, heat is released.
In the formation of bonds less energy is released than is required to break the existing bonds, heat is absorbed.
Answer:
Ocean currents act much like a conveyor belt, transporting warm water and precipitation from the equator toward the poles and cold water from the poles back to the tropics. Thus, ocean currents regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.
Explanation:
Answer:
They have the same number of atoms. = YES
They have different masses. = YES
Explanation:
1 mol of beryllium
• 1 mol of salt
beryllium = Be = Atomic mass: 9.012182
salt = NaCl = Molar mass: 58.44 g/mol
1 mol of water
• 1 mol of hydrogen
water = H2O = Molar mass: 18.01528 g/mol
hydrogen = H = 1g/mole
Which statement is true about these substances?
They have exactly the same mass. = NO
They have different numbers of particles = NO
They have the same number of atoms. = YES
They have different masses. = YES
Avogadro constant means the number of units in one mole of any substance (defined as its molecular weight in grams) is equal to 6.02214076 ×
.
Answer
is: activation energy of this reaction is 212,01975 kJ/mol.<span>
Arrhenius equation: ln(k</span>₁/k₂) =
Ea/R (1/T₂ - 1/T₁).<span>
k</span>₁
= 0,000643 1/s.<span>
k</span>₂
= 0,00828 1/s.
T₁ = 622 K.
T₂ = 666 K.
R = 8,3145 J/Kmol.
<span>
1/T</span>₁ =
1/622 K = 0,0016 1/K.<span>
1/T</span>₂ =
1/666 K = 0,0015 1/K.<span>
ln(0,000643/0,00828) = Ea/8,3145 J/Kmol ·
(-0,0001 1/K).
-2,55 = Ea/8,3145 J/Kmol </span>· (-0,0001 1/K).<span>
Ea = 212019,75 J/mol = 212,01975 kJ/mol.</span>
Answer:
false
Explanation:
longer the wave length less frequency