Sodium Sulfate
= Na2(SO4) meaning there are two ions of Na+ in one mole of Sodium Sulfate the M
stands for Molarity, defined as Molarity = (moles of solute)/(Liters of
solution), So if the Na2SO4 solution is 3.65M that means one Liter of has 3.65
moles of Na2SO4, the stoichiometry of Na2SO4 shows that there would be two Na+
ions in solution for every one Na2SO4.
Therefore if
3.65 moles of Na2SO4 was to dissolve, it would produce 7.3 moles of Na+, and
since this is still a theoretical solution, we can assume 1 L of solution.
Finally we find
[Na+] = 2*3.65 = 7.3M
Use the same
logic for parts b and c
<span>Naphthalene has a higher melting point than biphenyl because naphthalene is a polar compound while biphenyl is a non-polar compound.</span> Studies show <span>that polar compounds have higher melting and boiling points than nonpolar compounds. It is because polar compounds have strong intermolecular forces.</span>
First, we need to get the value of Ka:
when Ka = Kw / Kb
we have Kb = 1.8 x 10^-5
and Kw = 3.99 x 10^-16 so, by substitution:
Ka = (3.99 x 10^-16) / (1.8 x 10^-5) = 2.2 x 10^-11
by using the ICE table :
NH4+ + H2O →NH3 + H+
intial 0.013 0 0
change -X +X +X
Equ (0.013-X) X X
when Ka = [NH3][H+] / [NH4+]
by substitution:
2.2 x 10^-11 = X^2 / (0.013 - X) by solving this equation for X
∴X = 5.35 x 10^-7
∴[H+] = X = 5.35 x 10^-7
∴PH = - ㏒[H+]
= -㏒(5.35 x 10^-7)
= 6.27
<span>Fill in the blanks: when an atom absorbs energy, the electrons move from their (ground) state to an (excited) state. when an atom emits energy, the electrons move from a(n) (excited) state to their (ground) state and give off (energy)</span>