Answer:
Here's what I find
Explanation:
Heisenberg observed that if we want to locate a moving electron, we must bounce photons off it.
However, this makes it recoil. By the time the photon returns to our eye, the electron will no longer be in the same place.
He concluded that there is a limit to the precision with which we can simultaneously measure the position and speed (momentum) of a particle.
The more precisely we know the electron's speed, the less precisely we know its position and vice versa.
The uncertainty in the product of the two values cannot be less than a fixed small number.
Answer:
Explanation:
The air 9% mole% methane have an average molecular weight of:
9%×16,04g/mol + 91%×29g/mol = 27,8g/mol
And a flow of 700000g/h÷27,8g/mol = 25180 mol/h
In the reactor where methane solution and air are mixed:
In = Out
Air balance:
91% air×25180 mol/h + 100% air×X = 95%air×(X+25180)
Where X is the flow rate of air in mol/h = <em>20144 mol air/h</em>
<em></em>
The air in the product gas is
95%×(20144 + 25180) mol/h = 43058 mol air× 21%O₂ = 9042 mol O₂ ×32g/mol = <em>289 kg O₂</em>
43058 mol air×29g/mol <em>1249 kg air</em>
Percent of oxygen is:
=<em>0,231 kg O₂/ kg air</em>
<em></em>
I hope it helps!
Answer;
The above statement is true
upon heating a copper sample will expand, leading to a lower density
Explanation;
-The density of solids decreased with increase in temperature and vice versa. The increase in temperature causes the volume of the solid to increase which as a result decreases the density as Density=Mass/Volume. The temperature of a body is the average kinetic energy of the molecules present in it.
In other words; The temperature of a body is the average kinetic energy of the molecules present in it. Therefore; when heat is supplied ( or temperature is increased) the average kinetic energy increases which increases the volume and thus density decreases.