Answer:
energy and the equilibrium constant.
The sign of the standard free energy change ΔG° of a chemical reaction determines whether the reaction will tend to proceed in the forward or reverse direction.
Similarly, the relative signs of ΔG° and ΔS° determine whether the spontaniety of a chemical reaction will be affected by the temperature, and if so, in what way.
ΔG is meaningful only for changes in which the temperature and pressure remain constant. These are the conditions under which most reactions are carried out in the laboratory; the system is usually open to the atmosphere (constant pressure) and we begin and end the process at room temperature (after any heat we have added or which is liberated by the reaction has dissipated.) The importance of the Gibbs function can hardly be over-stated: it serves as the single master variable that determines whether a given chemical change is thermodynamically possible. Thus if the free energy of the reactants is greater than that of the products, the entropy of the world will increase when the reaction takes place as written, and so the reaction will tend to take place spontaneously. Conversely, if the free energy of the products exceeds that of the reactants, then the reaction will not take place in the direction written, but it will tend to proceed in the reverse direction.
Yeah so you have to start of with converting your first two values into moles (forget the third one)
97.5 g NO * 1 mol/30.01 g NO = 3.25 moles NO
88.0 g O2 * 1 mol/16.00 g O2 = 5.5 moles O2
now we can find the limiting reactant by checking for the amount of product each reactant should give us by using molar ratios
3.25 mol NO * 2 mol NO2/2 mol NO = 3.25 mol NO2
5.5 mol O2 * 2 mol NO2/ 1 mol O2 = 11
so NO is the limiting reactant since it produces less product/gets used up quicker
3.25 mol NO * 2 mol NO2/2molNO = 3.25 mol NO2
so this is our theoretical yield and the question provides us with the actual yield (2.68 moles). since the actual yield is given in moles, we don't have to convert to grams. our percent yield formula goes like: actual yield/theoretical yield * 100
2.68 mol/3.25 mol * 100 = 82.46%
It depends on where it is locacated (close or far away from the equator)
The element should be Argon
Scientists finally found the reason for the periodicity of the elements: Valence electrons. And so the table became known as the Periodic Table