Mass percentage of a solution is the amount of solute present in 100 g of the solution.
Given data:
Mass of solute H2SO4 = 571.3 g
Volume of the solution = 1 lit = 1000 ml
Density of solution = 1.329 g/cm3 = 1.329 g/ml
Calculations:
Mass of the given volume of solution = 1.329 g * 1000 ml/1 ml = 1329 g
Therefore we have:
571.3 g of H2SO4 in 1329 g of the solution
Hence, the amount of H2SO4 in 100 g of solution= 571.3 *100/1329 = 42.987
Mass percentage of H2SO4 (%w/w) is 42.99 %
The organization is based off solitaire and many of the elements are the same
A positive cahnge of enthalpy, ΔH rxn = + 55 kJ/mol, for the forward reaction means that the reaction is endothermic, i.e. the reactants absorb energy and the products are higher in energy.
Activation energy is the difference in the energy level of the reactants and the peak in the potential energy diagram (the energy of the transition state).
For an endothermic reaction, the products will be closer in energy to the transition state than what the reactans will be; so, the activation energy of the reversed reaction is lower than the activation energy of the forward reaction.
Activation energy of reverse and forward reactions is related by:
Activation energy of reverse rxn = Activation energy of forward rxn - ΔH rxn
=> Activiation energy of reverse rxn = 102 kJ/mol - 55 kJ/mol = 47 kJ/mol
Answer: 47 kJ/mol
Answer:
1. relative time
2.absolute time
Explanation:
Time that is measured in definite periods such as minutes, days, and years is called
a. Relative time.
b. absolute time.
Answer:
1.38 M
Explanation:
Need to use the Molarity equation M=n/L
23.5g/ 17.031g/mol NH3 = 1.38 moles
1.38 moles/ 1.0 L = 1.38 M