1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anygoal [31]
3 years ago
14

Mengapa indra peraba tidak dapat digunakan untuk membandingkan suhu dengan tepat?

Physics
1 answer:
Debora [2.8K]3 years ago
3 0
Answer it ur self if u have internet
You might be interested in
Two objects are 5 kg and 10 kg respectively, and they're 10 m apart. if the distance between them is increased to 20 m, what hap
Sati [7]
I think it's OPTION A, IT DECREASES.
6 0
3 years ago
Streams pick up a greater load of sand and gravel as they leave a mountain range and flow across a lowland.
inessss [21]
B

because it will pick it up while coming down not just flowing on low land<span />
6 0
3 years ago
Which type of ocean sediment contains the remains of dead organisms?
konstantin123 [22]
The <span>biogenous sediment contains the remains of dead organisms such as shells and skeletons.</span>
4 0
3 years ago
Read 2 more answers
Two objects carry initial charges that are q1 and q2, respectively, where |q2| &gt; |q1|. They are located 0.160 m apart and beh
mart [117]

Answer:

\rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

Explanation:

According to the Coulomb's law, the magnitude of the electrostatic force between two static point charges  \rm q_1 and \rm q_1, separated by a distance \rm r, is given by

\rm F = \dfrac{kq_1q_2}{r^2}.

where k is the Coulomb's constant.

Initially,

\rm r = 0.160\ m\\F_i = -1.30\ N.\\\\and \ \ |q_2|>|q_1|.

The negative sign is taken with force F because the force is attractive.

Therefore, the initial electrostatic force between the charges is given by

\rm F_i = \dfrac{kq_1q_2}{r^2}.\\-1.30=\dfrac{kq_1q_2}{0.160^2}\\\rm\Rightarrow q_2 = \dfrac{-1.30\times 0.160^2}{q_1k}\ \ \ ..............\ (1).

Now, the objects are then brought into contact, so the net charge is shared equally, and then they are returned to their initial positions.

The force is now repulsive, therefore, \rm F_f = +1.30\ N.

The new charges on the two objects are

\rm q_1'=q_2' = \dfrac{q_1+q_2}{2}.

The new force is given by

\rm F_f = \dfrac{kq_1'q_2'}{r^2}\\+1.30=\dfrac{k\left (\dfrac{q_1+q_2}{2}\right )\left (\dfrac{q_1+q_2}{2}\right )}{0.160^2}\\\Rightarrow \left (\dfrac{q_1+q_2}{2}\right )^2=\dfrac{+1.30\times 0.160^2}{k}\\(q_1+q_2)^2=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+q_2^2+2q_1q_2=\dfrac{4\times 1.30\times 0.160^2}{k}\\\\

Using (1),

\rm q_1^2+\left ( \dfrac{-1.30\times 0.160^2}{q_1k}\right )^2+2\left (\dfrac{-1.30\times 0.160^2}{k} \right )=\dfrac{4\times 1.30\times 0.160^2}{k}\\q_1^2+\dfrac 1{q_1^2}\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0

\rm q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{k}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{k} \right )=0\\q_1^4+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )=0\\q_1^4-q_1^2\left (\dfrac{6\times 1.30\times 0.160^2}{9\times 10^9} \right )+\left ( \dfrac{-1.30\times 0.160^2}{9\times 10^9}\right )^2=0

\rm q_1^4-q_1^2\left (2.22\times 10^{-11} \right )+\left ( 1.37\times 10^{-23}\right ) =0\\\Rightarrow q_1^2 = \dfrac{-(-2.22\times 10^{-11})\pm \sqrt{(-2.22\times 10^{-11})^2-4\cdot (1)\cdot (1.37\times 10^{-23})}}{2}\\=1.11\times 10^{-11}\pm 1.046\times 10^{-11}.\\=6.4\times 10^{-13}\ \ \ or\ \ \ 2.156\times 10^{-11}\\\Rightarrow q_1 = \pm 8.00\times 10^{-7}\ C\ \ \ or\ \ \ \pm 4.64\times 10^{-6}\ C.

Using (1),

When \rm q_1 = \pm 8.00\times 10^{-7}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 8.00\times 10^{-7}\times 9\times 10^9}=\mp4.6\times 10^{-6}\ C.

When \rm q_1=\pm 4.6\times 10^{-6}\ C,

\rm q_2=\dfrac{-1.30\times 0.160^2}{\pm 4.64\times 10^{-6}\times 9\times 10^9}=\mp7.97\times 10^{-7}\ C\approx 8.0\times 10^{-7}\ C.

Since, \rm |q_2|>|q_1|

Therefore, \rm |q_1|=8.0\times 10^{-7}\ C,\ \ \ |q_2| = 4.6\times 10^{-6}\ C.

7 0
3 years ago
How many stars has been observed by Hubble telescope till now ?
Hoochie [10]

Answer:

More Than 1.3 million.

Hope it helps :))

8 0
2 years ago
Other questions:
  • What term in physical science is defined as a change in position
    11·1 answer
  • What would be the result of voltage while joining 2 or more different voltages of batteries with parallel ? and explain me what
    6·1 answer
  • Starting the moon's cycle with the new moon phase, what phase will it be in after about a week?
    8·1 answer
  • A hobby rocket reaches a height of 72.3 meters and lands 111 meters from the launch point
    14·1 answer
  • The blackbody emission spectrum of object A peaks in the ultraviolet region of the electromagnetic spectrum at a wavelength of 2
    15·1 answer
  • Which of the following statement is false
    15·2 answers
  • In a velocity selector having electric field E and magnetic field B, the velocity selected for positively charged particles is v
    14·1 answer
  • Which of the following sensory receptors would lead you to squint in bright light?. A. thermoreceptors B. mechanoreceptors C. ph
    7·1 answer
  • Why was 6 afraid of 7​
    12·1 answer
  • The noise from a power mower was measured at 104 dB. The noise level at a rock concert was measured at 121 dB. Find the ratio of
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!