<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.
The answer for the following problem is explained below.
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
Explanation:
Given:
radius (r) =2.1 cm = 2.1 ×
m
height (h) =8.8 cm = 8.8 ×
m
total charge (q) =6.1×
C
To solve:
volume charge density (ρ)
We know;
<u> ρ =q ÷ v</u>
volume of cylinder = π ×r × r × h
volume of cylinder =3.14 × 2.1 × 2.1 ×
× 8.8 ×
volume of cylinder (v) = 122.23 ×
<u> ρ =q ÷ v</u>
ρ = 6.1×
÷ 122.23 ×
<u>ρ = 0.04 × </u>
<u> C</u>
Therefore the volume charge density of a substance (ρ) is 0.04 ×
C.
It would be Joules.
Workdone is measured in Joules.
Workdone = Force * distance
Force = mass * acceleration
= kg * ms⁻²
= kgms⁻²
Distance = m
So, Force * distance
kgms⁻² * m
Apply laws of indices that says
x² * x³ = x²⁺³ = x⁵
Therefore, It would be kgm²s⁻²
m¹ * m¹ = m¹⁺¹ = m²
s⁻² is also = s / 2
If they become closer, it is increased, and if the objects become farther away is decreased.
Cinder cone volcanoes can be associated with either constructive or destructive margins.<span>
</span>