Answer:
The magnitude of Electric Field is 
Explanation:
Given:
- Radius of the solid sphere=R
- Total charge of the sphere=Q
Let consider a Gaussian surface at a distance of r such that 0<r>R in the shape of sphere such that the electric Field due to this E and it is radially outwards.
The charge inside this Gaussian surface volume we have , 
Now using Gauss Law we have

Answer:
When the electrons jump to a higher energy state, they release energy as electromagnetic radiation, light.
Explanation:
When the solar wind gets past the magnetic field and travels towards the Earth, it runs into the atmosphere. As the protons and electrons from the solar wind hit the particles in the Earth's atmosphere, they release energy – and this is what causes the northern lights.
Answer:
3 quarters of the world likes pizza. (75%) and the remaining quarter of people (25%) dont like pizza.
Because the two paths are perpendicular, therefore the
target proton's new path must be at 30 degrees from the original
direction.
Using the law of conservation of momentum about the original direction:
m (400 m/s) = m (v1) cos(60) + m (v2) cos(30)
Cancelling m since the two protons have similar mass.
(v1)cos(60) + (v2)cos(30) = 500 m/s ---> 1
Now by using the law conservation of momentum perpendicular to the original
direction:
m (0 m/s) = m (v1) sin(60) – m (v2) sin(30)
Which simplifies to:
(v1)sin(60) - (v2)sin(30) = 0 m/s
v2 = v1 * sin(60) / sin(30) = v1 * sqrt(3) ---> 2
Plugging equation 2 to equation 1:
(v1) (1/2) + (v1 * sqrt(3)) sqrt(3)/2 = 500 m/s
(1/2) (v1) + (3/2) (v1) = 500 m/s
2 (v1) = 500 m/s
v1 = 250 m/s
Thus, from equation 2:
v2 = v1*sqrt(3) = (250 m/s) sqrt(3) = 433.01 m/s
So,
A. The target proton's speed is about 433 m/s
B. The projectile proton's speed is 250 m/s