The answer is C. in sort of a way. You can't technically see black matter. However, it is holding the galaxies together.
No, it will only melt if the temperature is lowered. If you compress it, it will change the shape, but it will not change the state it is in (i.e. solid).
Answer:
3.43 m/s^2
Explanation:
Force is equal to mass times acceleration. (F=ma). You can use inverse operations to get the formula for acceleration, which is acceleration is equal to force divided by mass. (a=F/m). Since there are two forces here, the force friction (55 N), and the force applied (175 N), we must solve for the net force. To solve for the net force, you take the applied force (175 N) and subtract the frictional force from it (55 N). Thus, the net force is 120 N. With this done, we can now solve for our acceleration.
Using the equation for acceleration, we take the force and divide it by mass.
120/35
Answer: 3.43* m/s^2**
*Note: This is rounded to the nearest hundredth, the full answer is: 3.42857143
**Note: In case you're confused, this is meters per second squared.
Answer:
The magnitude of electric force is 
Explanation:
Coulomb's Law:
The force of attraction or repletion is
- directly proportional to the products of charges i.e

- inversely proportional to the square of distance i.e


[ k is proportional constant=9×10⁹N m²/C²]
There are two types of force applied on Q=+2.5 μC=2.5×10⁻⁶ C
Let F₁ force be applied on Q =+2.5 μC by q₁= -5.0 μC = - 5.0×10⁻⁶ C
and F₂ force be applied on Q=+2.5 μC by q₂= 5.0 μC= 5.0×10⁻⁶ C
Since the magnitude of F₁ and F₂ are same. Therefore their y component cancel.
If we draw a line from q₁ to Q .
The it forms a triangle whose base = 4.0 cm and altitude =3.0 cm.
Let hypotenuse = r
Therefore, 
we know,


Total force 


[ r=5]
N
The magnitude of electric force is 