Answer:
124.52 mL
Explanation:
from Boyle's Law,
PV = P'V' ................... Equation 1
Where P = Initial pressure of the gas, V = Initial volume of the gas, P' = Final pressure of the gas, V' = Final volume of the gas.
make V' the subject of the equation.
V' = PV/P'............. Equation 2
Given: P = 267 torr = (267×0.00131) = 0.34977 atm, V = 356 mL, P' = 1 atm
Substitute into equation 2
V' = (0.34977×356)/1
V' = 124.52 mL.
Hence the new volume of the balloon = 124.52 mL
Julianne’s displacement from her origin is equal to 10.015 kilometers.
<u>Given the following data:</u>
- Distance B = 8.5 km, Northeast.
To calculate Julianne’s displacement from her origin:
<h3>How to calculate displacement.</h3>
We would denote the two (2) unit vectors along the East and Northeast directions by i and j respectively.
<u>Note:</u> Northeast is at angle of 45° with the East.
In terms of vectors, the distances becomes:
Distance A = 2i
![Distance\;B=8.5 [(cos 45i + sin 45j)]\\\\Distance\;B=(\frac{8.5}{\sqrt{2} } i \;+\;\frac{8.5}{\sqrt{2} } j)](https://tex.z-dn.net/?f=Distance%5C%3BB%3D8.5%20%5B%28cos%2045i%20%2B%20sin%2045j%29%5D%5C%5C%5C%5CDistance%5C%3BB%3D%28%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20i%20%5C%3B%2B%5C%3B%5Cfrac%7B8.5%7D%7B%5Csqrt%7B2%7D%20%7D%20j%29)
<u>For the </u><u>resultant displacement</u><u>:</u>

D = 10.015 kilometers.
Read more on displacement here: brainly.com/question/13416288
Answer:
h = 0.362 m
Explanation:
The pressure equation with depth is
P₂ =
+ρ g h
The gauge pressure is
P2 -
= ρ g h
This is the pressure that muscles can create
P₂ -
= 3740 Pa
But still the person needs a small pressure for the transfer of gases, so
P₂ -
= 3740 - 188 = 3552 Pa
This is the maximum pressure difference, where the person can still breathe,
Let's clear the height
h = 3552 / ρ g
h = 3552 / (1000 9.8)
h = 0.362 m
This is the maximum depth where the person can still breathe normally.
Answer:
Average acceleration is 
Explanation:
It is given that,
Initial velocity, u = 0
Final velocity, v = 6.5 km/s = 6500 m/s
Time taken, t = 60 s
Acceleration, 

Since, 
So, 
So, the angular acceleration of the missile is
. Hence, this is the required solution.