<u>Answer:</u>
<u>For A:</u> The
for the given reaction is 
<u>For B:</u> The
for the given reaction is 1642.
<u>Explanation:</u>
The given chemical reaction follows:

The expression of
for the above reaction follows:

We are given:

Putting values in above equation, we get:

Hence, the
for the given reaction is 
Relation of
with
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = 
= equilibrium constant in terms of concentration = ?
R = Gas constant = 
T = temperature = 500 K
= change in number of moles of gas particles = 
Putting values in above equation, we get:

Hence, the
for the given reaction is 1642.
Hello
its me
and alsooo
the awnser is
number 3 lol
Answer:
Explanation:
This is a direct application of the equation for ideal gases.
Where:
- P = pressure = 1.25 atm
- V = volume = 25.2 liter
- R = Universal constant of gases = 0.08206 atm-liter/K-mol
- T = absolute temperature = 25.0ºC = 25 + 273.15 K = 298.15 K
- n = number of moles
Solving for n:
Substituting:

What was the question here?
When you want to melt an ice, you only need the latent energy of fusion, <span>δhfus. We use the given value, then multiply this with the given amount to determine the amount of energy. Since the energy is per mole basis, use the molar mass of ice which is 18 g/mol. The solution is as follows:
</span>ΔH = 5.96 kJ/mol * 1 mol/18 g * 500 g
<em>ΔH = 165.56 kJ</em><span>
</span>