Answer:
1.654 atm.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If n and V are constant, and have different values of P and T:
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
P₁ = 1.0 atm, T₁ = 25°C + 273 = 298 K,
P₂ = ??? atm, T₂ = 220°C + 273 = 493 K,
- Applying in the above equation
<em>(P₁T₂) = (P₂T₁)</em>
<em></em>
<em>∴ P₂ = (P₁T₂)/(T₁) </em>= (1.0 atm)(493 K)/(298 K) = <em>1.654 atm.</em>
<span>Now consider a low pressure area on a disk as shown below.A parcel of air at point A would move toward the center of the low pressure area. That movement would take it farther away from the center of the disk and therefore it would move to the west. A parcel of air at B would move toward the center of the low pressure area which would also take it closer to the center of the spinning disk where its speed is greater than the surrounding points. It would appear to move to the east. With A moving to the west and B moving to the east the line from A to B is rotating counterclockwise.</span>
Answer:
Lewis acid is a substance that donates a lone-pair of electrons.
Explanation:
What is said in the statement corresponds to a Lewis base, not an acid. For example, NH3 is a Lewis base, since it is capable of donating its pair of electrons. Trimethylborane (Me3B) is a Lewis acid, since it is capable of accepting a solitary pair.
It is ionic bond because of Na valency and it is alkali metal and cl is non metal and it’s valency , they both share electron and make ionic bonding .
Anatomy I think it's important to know anatomy as a young adult so u are self aware of your body