Answer:
Hope this helps!
Explanation:
Ans: 15.1 grams
Given reaction:
Na2CO3 + Ca(OH)2 → 2NaOH + CaCO3
Mass of Na2CO3 = 20.0 g
Molar mass of Na2CO3 = 105.985 g/mol
# moles of Na2CO3 = 20/105.985 = 0.1887 moles
Based on the reaction stoichiometry: 1 mole of Na2CO3 produces 2 moles of NaOH
# moles of NaOH produced = 0.1887*2 = 0.3774 moles
Molar mass of NaOH = 22.989 + 15.999 + 1.008 = 39.996 g/mol
Mass of NaOH produced = 0.3774*39.996 = 15.09 grams
Answer:
high pressure of 200-300 atm.
low temp. of between 400-500 degrees celsius:this is for continuous development of ammonia since it decomposes at high temp fathermore the reaction is exothermic
a catalyst to speed up the rate of reaction:i guess it is finely divided iron impregnated in aluminium oxide
platinum can be used as a catalyst but it is easily poisoned
hope it helps
Explanation:
<span>You need to have NAD+ as a source of oxidation for the pyruvate, as well as a supply of coenzyme A. CO2 is released by the pyruvate as a carboxyl group is removed</span>
Answer : The molar heat of solution of KCl is, 17.19 kJ/mol
Explanation :
First we have to calculate the heat of solution.

where,
q = heat produced = ?
c = specific heat capacity of water = 
= change in temperature = 0.360 K
Now put all the given values in the above formula, we get:


Now we have to calculate the molar heat solution of KCl.

where,
= enthalpy change = ?
q = heat released = 460.8 J
m = mass of
= 2.00 g
Molar mass of
= 74.55 g/mol

Now put all the given values in the above formula, we get:


Therefore, the molar heat of solution of KCl is, 17.19 kJ/mol
<span>It is the valence orbit that controls the electrical properties of the atom. The valence electron is referred to as a "free electron.' Valence electrons have the highest energy of all electrons in an atom; they are also the most reactive, meaning they are usually the electrons involved in bonding. When silicon atoms combine to form a solid, they arrange themselves into an orderly pattern called a crystal.</span>